Counter
Mathematics Dictionary
Dr. K. G. Shih

Trigonometric Topic Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |
Q | R | S | T | U | V | W | X | Y | Z |
Keyword Topics


Q01. A

  • Absolute
    • 27 10 Absolute : cos(2*x) = sin(x) + Abs(sin(x)), find sin(x)
    • 27 09 Absolute : Sketch y = cos(x)+sin(x) + Abs(cos(x)-sin(x))
    • 27 12 Absolute : Sketch y = cos(x) - Abs(cos(x))
  • Angles : Sum and differece
    • 07 02 Angle A+B : cos(A+B)
    • 07 01 Angle A+B : sin(A+B)
    • 07 05 Angle A+B : tan(A+B)
    • 07 02 Angle A-B : cos(A-B)
    • 07 01 Angle A-B : sin(A-B)
    • 07 05 Angle A-B : tan(A-B)
  • Arccosine functions
    • 13 01 arccosine : Series of arccos(x)
    • 08 07 arccos(x) = arctan(Sqr(1-x^2)/x)
  • Arcsine functions
    • 08 09 arcsin(4/5) + arcsin(5/13) + arcsin(16/65) = pi/2
    • 08 09 arcsin(4/5) + arcsin(5/13) + arcsin(16/65) = pi/2
    • 08 04 arcsin(x) + arcsin(y) = arcsin(x*Sqr(1-y^2) + y*Sqr(1-x^2))
    • 13 01 Series of arcsin(x)
    • 08 08 arcsin(sin(A)+sin(B))+arcsin(sin(A)-sin(B))=pi/2. Find sin(A)^2+sin(B)^2
  • arctangent functions
    • 08 10 Prove that 2*arctan(1/3) + arctan(1/7) = 45 degrees
    • 08 06 arctangent : Prove that arctan(x) + arctan(y) = arctan((x+y)/(1-x*Y)
    • 13 03 arctangent : Series of arctan(x)
  • 10 06 Area of triangle ABC
    • 10 06 Area = Sqr(s*(s-a)*(s-b)*(s-c)
    • 10 10 Area = r*s where r is in-radius
    • 10 11 Area = r1*(s-a) = r2*(s-b) = r3*(s-c)
    • 10 13 Area ABC = a*b*c/(4*R) where R is ex-radius
  • Asymptotes
    • 06 04 Asymptote : y = csc(x)
    • 06 05 Asymptote : y = sec(x)
    • 06 03 Asymptote : y = tan(x)
  • A + B + C = pi
    • 11 02 cos(2*A) + cos(2*A) + cos(2*C) = ?
    • 11 01 sin(2*A) + sin(2*A) + sin(2*C) = ?

    Go to Begin

    Q02. B

  • Bisectors
    • 27 01 Bisector AD = 2*b*c*cos(A/2)/(b+c)
    • 27 02 Bisectors of triangle making angles x,y,z with sides
    • 10 10 Bisectors of angles - In-center
    • 10 11 Bisectors of angles - Ex-center
    • 10 13 Bisectors of sides - circum-center.

    Go to Begin

    Q03. C

    • 12 02 Cis(A)*Cis(B) = Cis(A+B)
    • 12 03 Cis(A)*Cis(B)*Cis(C) = Cis(A+B+C)
    • 12 13 Cis(A)/Cis(B) = Cis(A-B)
    • 10 02 Cosine law : a^2 = b^2 + c^2 - 2*b*c*cos(A)
    • 04 10 cos(1) + cos(2) + ..... cos(179) + cos(180) = -1
    • 07 24 cos(20)*cos(40)*cos(60)*cos(80) = 1/16
    • 14 04 cos(2*A) + sin(A) = q has real roots
    • 27 10 cos(2*x) = sin(x) + Abs(sin(x)), find sin(x)
    • 11 06 cos(A)+cos(B)+cos(C) = 1 + 4*sin(A/2)*sin(B/2)*sin(C/2), if A+B+C = pi
    • 07 02 cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B)
    • 07 04 cos(A-B) = cos(A)*cos(B) - sin(A)*sin(B)
    • 14 08 cos(A)^4 + sin(A)^4 = ? if cos(2*A) = Sqr(2)/3
    • 07 07 cos(A/2) = F(cos(A))
    • 10 08 cos(A/2) = F(s) if s = (a + b + c)/2
    • 07 25 cos(pi/16)^4 + cos(3*pi/16)^4 + cos(5*pi/16)^4 + cos(7*pi/16)
    • 14 10 cos(x)^6 + sin(x)^6. Find range if x between 0 and pi/2
    • 14 11 cos(x)^2 -4*cos(x)*sin(x) -3*cos(x)^2. Find range if x between 0 & pi/2

    Go to Begin

    Q04. D
    • 12 04 DeMoivre's Theory : Cis(A)^n = Cis(n*A)
    • 12 05 DeMoivre's Theory : Cis(A)^(1/n) = Cis((2*k*pi+A)/n)
    • 07 09 Difference of functions : cos(A) - cos(B) = ?
    • 07 09 Difference of functions : sin(A) - sin(B) = ?

    Go to Begin

    Q05. E
    • 27 05 Equaliteral triangle ABC inscribed unit circle. P on circle. PA^2 +PB^2 +PC^2
    • 21 07 Equations e.g. solve sin(x) = 0.5
    • 09 08 Equation : Solve 1/cos(x) + 1/sin(x) = 2*Sqr(2)
    • 09 10 Equation : sin(2*x)*sin(5*x) +sin(4*x)*sin(11*x) +sin(9*x)*sin(24*x) = 0
    • 19 00 Ex-central triangle
    • 10 10 Es-circle
      • Tangent from A or B or C is s.
      • Radius of escile 1 is r1 = s*tan(A/2).
      • Radius of escile 2 is r2 = s*tan(B/2).
      • Radius of escile 3 is r3 = s*tan(C/2).
      • Area of triangle ABC = r1*(s-a) = r2*(s-b) = r3*(s-c).
      • 1/r = 1/r1 + 1/r2 + 1/r3 where r is in-radius.
    • 10 13 Ex-circle
      • Sine law : a = 2*R*sin(A).
      • Area of triangle ABC = a*b*c/(4*R)

    Go to Begin

    Q06. F


    Go to Begin

    Q07. G

    • 07 11 GP question
      • Angles of triangle in 3 consecutive GPterms and common ratio = 3
      • Prove that cos(A)*cos(B) + cos(B)*cos(C) + cos(C)*cos(A) = -1/4
    • 07 16 GP question
      • Angles of triangle in 3 consecutive GPterms and common ratio = 2
      • Prove that cos(A)*cos(B) + cos(B)*cos(C) + cos(C)*cos(A) = ?
    • 27 13 GP : Sum[((1/2)^n)*cos(n*pi/2))] for n = 1 to infinite
    • 27 13 GP : Sum[((1/2)^n)*cos(n*pi/2))] for n = 1 to infinite
    • 17 02 Graph of x = sin(t) and y = cos(t)
    • 17 03 Graph of x = tan(t) and y = sec(t)
    • 06 06 Graph of y = cot(x)
    • 06 03 Graph of y = cos(x)
    • 06 04 Graph of y = csc(x)
    • 06 05 Graph of y = sec(x)
    • 06 01 Graph of y = sin(x)
    • 06 03 Graph of y = tan(x)

    Go to Begin

    Q08. H
    • 07 07 Half angle : cos(A/2) = F(cos(A))
    • 07 07 Half angle : sin(A/2) = F(cos(A))
    • 07 07 Half angle : tan(A/2) = F(cos(A))
    • 10 08 Half angle : cos(A/2) = F(s)
    • 10 09 Half angle : sin(A/2) = F(s)
    • 10 07 Half angle : tan(A/2) = F(s)
    • 10 06 Heron Formula
    • 27 06 Hexagon ABCDEF inscribed unit circle, P on circle. PA^2+ ... +PF^2 = 2*6

    Go to Begin

    Q09. I

  • 10 08 Identity : cos(A/2) = Sqr((s-b)*(s-c)/(b*c))
  • 10 09 Identity : sin(A/2) = Sqr(s*(s-a)/(b*c))
  • 10 05 Identity : sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
  • 10 09 Identity : tan(A/2) = Sqr(s*(s-a)/((s-b)*(s-c))
  • 10 12 Identity : tan(A/2)*tan(B/2) + tan(B/2)*tan(C/2) + tan(C/2)*tan(A/2) = 1
  • 11 01 Identity : sin(2*A)+sin(2*B)+sin(2*C) = ?
  • 11 02 Identity : cos(2*A)+cos(2*B)+cos(2*C) = ?
  • 11 03 Identity : cos(A)^2+cos(B)^2+cos(B)^2 = ?
  • 11 04 Identity : sin(A)^2+sin(B)^2+sin(C)^2 = ?
  • 11 05 Identity : sin(A)+sin(B)+sin(C) = 4*cos(A/2)*cos(B/2)*cos(C/2)
  • 11 06 Identity : cos(A)+cos(B)+cos(C) = 1 + 4*sin(A/2)*sin(B/2)*sin(C/2)
  • 11 07 Identity : cos(A/2)^2+cos(B/2)^2+cos(B/2)^2 = 2*(1 + sin(A/2)*sin(B/2)*sin(C/2))
  • 11 08 Identity : sin(A/2)^2+sin(B/2)^2+sin(C/2)^2 = 1 - 2*sin(A/2)*sin(B/2)*sin(C/2)
  • 21 04 Inverse trigonometric functions
  • 08 08 Inverse trig : arcsin(sin(A)+sin(B))+arc(sin(A)-sin(B))=pi/2, find ....
  • 10 10 In-circle
    • Tangent at A = (s-a).
    • Tahgent at B = (s-b).
    • Tahgent at C = (s-c).
    • in-radius r = (s-a)*tan(A/2) = (s-b)*tan(B/2) = (s-c)*tan(C/2).
    • Area of ABC = r*s.

    Go to Begin

    Q10. J


    Go to Begin

    Q11. K


    Go to Begin

    Q12. L

  • 10 02 Law of cosine
  • 10 01 Law of sine
  • 14 01 Lim[sin(x)/x] = 1 as x tends to zero
    Go to Begin

    Q13. M

  • 07 17 Maximum : y = sin(x) + cos(x)
  • 07 18 Maximum : y = sin(x) + Sqr(3)*cos(x)
  • 14 06 Maximum : y = (sec(A)^2 - tan(A))/(sec(A)^2 + tan(A))
  • 14 07 Minimum : y = cos(A)^2 - 2*cos(A) + 3
  • 07 23 Multiple angle : Show that 5 + 8*cos(x) + 4*cos(2*x) + cos(3*x) GE 0
    Go to Begin

    Q14. N


    Go to Begin

    Q15. O


    Go to Begin

    Q16. P

    • 16 00 Parametric equations
    • 17 00 Pedal triangle
    • 07 09 Product of function to sum : cos(A)*cos(B)
    • 07 08 Product of function to sum : cos(A)*sin(B)
    • 07 08 Product of function to sum : sin(A)*cos(B)
    • 07 08 Product of function to sum : sin(A)*sin(B)
    • 07 14 Product of function to sum : S(n) = cos(x) +cos(3*x) +... +cos((2*n-1)*x)
    • 07 15 Product of function to sum : S(n) = sin(x)^2 +sin(2*x)^2 +... +sin(n*x)^2
    • 05 01 Pythagorean Relation : sin(x)^2 + cos(x)^2 = 1
    • 05 02 Pythagorean Relation : tan(x)^2 + 1 = sec(x)^2
    • 05 03 Pythagorean Relation : 1 + cot(x)^2 = csc(x)^2

    Go to Begin

    Q17. Q

  • 09 07 Quadratic equation : x^2 - 6*x + 16*sin(A) = 0 has integral roots
  • 14 04 Quadratic function : cos(2*x) + sin(x) = q has real roots
  • 14 05 Quadratic function : x^2 - 2*x*sin(pi*x/2) + 1 = 0 has real roots
    Go to Begin

    Q18. R

  • Graphs of functions
    • 15 04 R = sec(p*A/q)^M
    • 15 02 R = sin(p*A/q)^M
    • 15 03 R = tan(p*A/q)^M
    • 15 05 R = 1 + 1*sin(p*A/q)^M
    • 15 06 R = 2 + 4*sin(p*A/q)^M
    • 15 07 R = 4 + 2*sin(p*A/q)^M
    • 15 08 R = 1 + 1*sec(p*A/q)^M
    • 15 09 R = 2 + 4*sec(p*A/q)^M
    • 15 10 R = 4 + 2*sec(p*A/q)^M
    • 15 11 R = 1 + 1*tan(p*A/q)^M
    • 15 12 R = 2 + 4*tan(p*A/q)^M
    • 15 13 R = 4 + 2*tan(p*A/q)^M

    Go to Begin

    Q19. S

    • 01 03 Sector : Area of sectors = (r^2)*A/2 where A in radians
    • 01 02 Sector : Arc length s = r*A where A in radians
    • 13 02 Series : cos(x)
    • 13 01 Series : sin(x)
    • 13 03 Series : tan(x)
    • 13 05 Series : arccos(x)
    • 13 04 Series : arcsin(x)
    • 13 05 Series : arctan(x)
    • 07 14 Series : S(n) = cos(x) + cos(3*x) + .... + cos((2*n-1)*x)
    • 07 15 Series : S(n) = sin(x)^2 + sin(2*x)^2 + .... + sin(n*x)^2
    • 10 01 Sine Law : a/sin(A) = b/sin(B) = c/sin(C) = 2*R
    • 04 09 sin(1) + sin(2) + ... + sin(359) + sin(360) = 0
    • 14 02 sin(18)
    • 14 03 sin(9), sin(36)
    • 07 24 sin(20)*sin(40)*sin(60)*sin(80) = 3/16
    • 07 21 sin(A) and sin(B) have AP mid term sin(x) and GP mid term sin(y), prove ...
    • 11 05 sin(A)+sin(B)+sin(C) = 4*cos(A/2)*cos(B/2)*cos(C/2), if A+B+C = pi
    • 07 01 sin(A+B) = ?
    • 07 03 sin(A-B) = ?
    • 07 07 sin(A/2) = F(cos(A))
    • 10 09 sin(A/2) = F(s)
    • 07 25 sin(pi/16)^4 + sin(3*pi/16)^4 + sin(5*pi/16)^4 + sin(7*pi/16)
    • 04 09 sin(1) + sin(2) + ..... + sin(359) + sin(360) = 0
    • 27 05 Square ABCD inscribed unit circle, P on circle. PA^2 +PB^2 +PC^2 +PD^2 = 2*4
    • 07 09 Sum of functions : cos(A) + cos(B)
    • 07 09 Sum of functions : sin(A) + sin(B)
    • 07 19 Sum of functions : cos(2*A) + cos(2*B) + cos(2*C) = ? if A+B+C=pi
    • 07 19 Sum of functions : sin(A)^2 + sin(B)^2 + sin(C)^2 = ? if A+B+C=pi
    • 07 19 Sum of functions : cos(A) + cos(B) + cos(2) = ? if A+B+C=pi
    • 07 20 Sum of functions : sin(A)+sin(B)=p and cos(A)+cos(B)=q, find sin(A+B)
    • 07 22 Sum of functions : If A and B are acute angles sin(A+B) LT sin(A)+sin(B)

    Go to Begin

    Q20. T

    • 21 01 Transformation y = sin(x) to y - d = a*sin(b*x + c*pi)
    • 21 02 Transformation y = sin(x) to y - d = a*sin(b*x + c*pi)
    • 10 02 Trinagle : Cosine law
    • 10 11 Triangle : Es-circle
    • 10 13 Triangle : Es-circle
    • 10 10 Triangle : In-circle
    • 10 01 Triangle : Sine law
    • 10 14 Triangle : E,F,T are on sides, area EFT = ?
    • 10 15 Triangle : E,F,T are on sides, area EFT = (area ABC)/4
    • 10 16 Triangle : E,F,T are on sides, area EFT = (area ABC)*(n^2-3*n+3)/(n^2)
    • 10 15 Triangle : E,F,T are on sides, area EFT = 7*(area ABC)/24
    • 07 24 tan(20)*tan(40)*tan(60)*tan(80) = 3
    • 07 05 tan(A+B)
    • 07 05 tan(A-B)
    • 07 07 tan(A/2) = F(cos(A))
    • 10 07 tan(A/2) = F(s)
    • 10 12 tan(A/2)*tan(B/2) + tan(B/2)*tan(C/2) + tan(C/2)*tan(A/2) = 1
    • 10 06 tan(y-z)+tan(z-x)+tan(x-y) = tan(y-z)*tan(z-x)*tan(x-y)
    • 08 03 Transformation of y = sin(x) to y - 2 = 3*Sin(2*x + pi/4)

    Go to Begin

    Q21. U

      01 01 Unit of angles : Degrees or radians
      13 02 Unit circle 13 03 Unit hyperbola

    Go to Begin

    Q22. V

      10 02 Vector : Sum of two vectors

    Go to Begin

    Q23. W


    Go to Begin

    Q24. X

  • 09 07 x^2 - 6*x + 16*sin(A) = 0 has integral roots
  • 14 05 x^2 - 2*x*sin(pi*x/2) + 1 = 0 has real roots
  • 16 02 x^2 + y^2 = 1 is unit circle.
  • 16 03 x^2 - y^2 = 1 and x^2 - y^2 = -1. The difference
    Go to Begin

    Q25. Y

    • 27 09 y = cos(x)+sin(x) + Abs(cos(x)-sin(x)) : Sketch for x between 0 and 2*pi
    • 21 02 y = sin(x); y = cos(x), etc
    • 21 03 y = sin(n*x)^M; y = cos(n*x)^M etc
    • 21 06 y = sin(a*x) + cos(b*x)
    • 21 06 y = sin(x)/x
    • 21 06 y = sin(x) + sin(2*x) + sin(3*x)
    • 21 06 y = tan(x)/x
    • 21 06 y = x*cos(x)
    • 21 06 y = x*sin(x)

    Go to Begin

    Q26. Z


    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1