Mathematics Dictionary
Dr. K. G. Shih
Trigonometry
Formulae
Read Symbol Defintion
Example : Sqr(x) = Square root of x
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z |
*** A
Addition formula
1. sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y).
2. cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y).
arccos(cos(A)) = A
arcsin(sin(A)) = A
arctan(tan(A)) = A
Area of triangle
Area = Base*Height/2
Area = b*c*sin(A)/2
Area = Sqr(s*(s-a)*(s-b)*s-c))
Area = r*s where s = (a+b+c)/2 and r = in-radius
Area = r1*(s-a) where s = (a+b+c)/2 and r1 = ex-radius
Area = a*b*c/(4*R) where R = circum-radius and a,b,c are sides of triangle
Go to Begin
*** B
Binomial theory
coefficients C(n,r) = n*(n-1)*...*(n-r+1)/n! = (n!)/((r!)*(n-1)!)
C(n+1,r) = C(n,r-1) + C(n,r)
C(n,0) + C(n,1) + C(n,2) + ... + C(n,n) = n^2
Binomial theory
Sum[C(n+1),2] = C(n+2,3)
Sum[C(n+2),3] = C(n+3,4)
Sum[C(n+3),4] = C(n+4,5)
Go to Begin
***C
cis(A) = cos(A) + i*sin(A)
Cosine law : a^2 = b^2 + c^2 - 2*b*c*cos(A)
cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B)
cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B)
co-function : (pi/2 - A) and (pi/2 + A)
sin(pi/2 - A) = +cos(A) and sin(pi/2 + A) = +cos(A)
cos(pi/2 - A) = +sin(A) and cos(pi/2 + A) = -sin(A)
tan(pi/2 - A) = +cot(A) and tan(pi/2 + A) = -cot(A)
co-function : (3*pi/2 - A) and (3*pi/2 + A)
sin(3*pi/2 - A) = -cos(A) and sin(3*pi/2 + A) = -cos(A)
cos(3*pi/2 - A) = -sin(A) and cos(3*pi/2 + A) = +sin(A)
tan(3*pi/2 - A) = +cot(A) and tan(3*pi/2 + A) = -cot(A)
Go to Begin
*** D
DeMoivre's theory
n is integer : (r*(cos(A) + i*sin(A)))^n = (r^n)*(cos(n*A) + i*sin(n*A))
n is negtive integer
(r*(cos(A) + sin(A)))^n = (r^n)*(cos(2*k*pi+A)/n) + i*sin(2*k*pi+A)/n)
Where k = 0, 1, 2, ... (n-1)
Diference of angles
1. sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y).
2. cos(x-y) = cos(x)*cos(y) + sin(x)*(sin(y).
3. tan(x-y) = (tan(x) - tan(y))/(1 + tan(x)*tan(y)).
Go to Begin
*** E
Ellipse : Polar form
R = D*e/(1-e*sin(A)) : Focus at bottom as origin
R = D*e/(1+e*sin(A)) : Focus at top as origin
R = D*e/(1-e*cos(A)) : Focus at left as origin
R = D*e/(1+e*cos(A)) : Focus at right as origin
Ellipse : (x/a)^2 + (y/b)^2 = 1 or ((x-h)/a)^2 + ((y-k)/b)^2 = 1
Center : (0,0) or (h,k)
Principal axis
y = 0 if a GT b
x = 0 if a LT b
Vertices : (h-a,k) and (h,h+a)
Focal length f = Sqr(a^2 - b^2)
Distance from one focus to directrix = D
Focus : (-f,0) and (f,0)
Equation of directrix : ?
Locus : sum of distance from point P to 2 fixed points equals 2*a
Ellipse : Parametric equation
x = h + a*cos(x) and y = k + b*sin(x)
Equation theory
Quadratic equation a*x^2 + b*x + c = 0 : Roots r1,r2
Sum of roots = Coefficient of x : r1 + r2 = -b/a or 1/r1 + 1/r2 = -b/c
Product of roots = Constant term : r1*r2 = c/a
Cubic equation a*x^3 + b*x^2 + c*x + d = 0 : Roots r1,r2,r3
Sum of roots = coeff of x^2 : r1 + r2 + r3 = -b/a
Coeff of x : r1*r2 + r1*r3 + r2*r3 = c/a
Constant term : r1*r2*r3 = -d/a
Ex-central triangle JKL
Side : KJ = 4*R*cos(A/2). (Note A on LK)
Side : LK = 4*R*cos(B/2). (Note B on JL)
Side : JL = 4*R*cos(C/2). (Note C on KJ)
Coordinate of ex-center J (s, s*tan(A/2))
Area of JKL = 8*(R^2)*cos(A/2)*cos(B/2)*cos(C/2)
Circum-radius of JKL = 2*(circum-radius of ABC) = 2*R
Ex-circle
Tangent length AF = s
Ex-rdius r = s*tan(A/2)
Go to Begin
*** F
Factor theory : If F(a) = 0, (x-a) is a factor of F(x)
Function : (pi - A) and (pi + A)
sin(pi - A) = +sin(A) and sin(pi + A) = -sin(A)
cos(pi - A) = -cos(A) and cos(pi + A) = -cos(A)
tan(pi - A) = -tan(A) and tan(pi + A) = +tan(A)
Function : (2*pi - A) and (2*pi + A)
sin(2*pi - A) = -sin(A) and sin(2*pi + A) = +sin(A)
cos(2*pi - A) = +cos(A) and cos(2*pi + A) = +cos(A)
tan(2*pi - A) = -tan(A) and tan(2*pi + A) = +tan(A)
Function : Negative angle A
sin(-A) = -sin(A), odd function
cos(-A) = +cos(A), even function
tan(-A) = -tan(A), odd function
Go to Begin
Q07. ***G
Go to Begin
*** H
Half angle
cos(x/2) = Sqr((1 + cos(x))/2)
sin(x/2) = Sqr((1 - cos(x))/2)
tan(x) = Sqr((1 - cos(x))/(1 + cos(x)))
Half angles
sin(A/2) = Sqr((s-b)*(s-c)/(b*c)).
sin(B/2) = Sqr((s-c)*(s-a)/(c*a)).
sin(C/2) = Sqr((s-a)*(s-b)/(a*b)).
Half angles
cos(A/2) = Sqr(s*(s-a)/(b*c)).
cos(B/2) = Sqr(s*(s-b)/(c*a)).
cos(C/2) = Sqr(s*(s-c)/(a*b)).
Half angles
tan(A/2) = Sqr((s-b)*(s-c)/(s*(s-a)).
tan(B/2) = Sqr((s-c)*(s-a)/(s*(s-b)).
tan(C/2) = Sqr((s-a)*(s-b)/(s*(s-c)).
Heron formula : Area of triangle = Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
Hyperbola : Polar form
R = D*e/(1-e*sin(A)) : Focus at bottom as origin
R = D*e/(1+e*sin(A)) : Focus at top as origin
R = D*e/(1-e*cos(A)) : Focus at left as origin
R = D*e/(1+e*cos(A)) : Focus at right as origin
Hyperbola : (x/a)^2 - (y/b)^2 = 1 or ((x-h)/a)^2 - ((y-k)/b)^2 = 1
Center : (0,0) or (h,k)
Principal axis
y = k if a GT b
x = h if a LT b
Vertices : (h-a,k) and (h,h+a)
Focal length f = Sqr(a^2 + b^2)
Distance from one focus to directrix = D
Focus : (-f,0) and (f,0)
Equation of directrix : ?
Locus : difference of distance from point P to 2 fixed points equals 2*a
Hyperbola : Parametric equation
x = h + a*sec(x) and y = k + b*tan(x)
Hyperbolic function
sinh(x) = ((e^x) - e^(-x))/2
cosh(x) = ((e^x) + e^(-x))/2
tanh(x) = sinh(x)/cosh(x)
csch(x) = 1/sinh(x)
tanh(x) = 1/cosh(x)
tanh(x) = cosh(x)/sinh(x)
Hypeebolic function : Inverse (see inverse hyperbolic function)
Go to Begin
*** I
In-circle
Tangent length AF = (s - a)
in-rdius r = (s - a)*tan(A/2)
Inverse functions
1. arcsin(sin(A)) = A
2. arccos(sin(A)) = A
3. arctan(sin(A)) = A
4. arccsc(sin(A)) = A
5. arcsec(sin(A)) = A
6. arccot(sin(A)) = A
Inverse functions
1. sin(arcsin(x)) = x
2. cos(arccos(x)) = x
3. tan(arctan(x)) = x
4. csc(arccsc(x)) = x
5. sec(arcsec(x)) = x
6. cot(arccot(x)) = x
Inverse hyperbolic functions
(a) arcsinh(X) = ln(X+SQR(X^2+1))
(b) arccosh(X) = ln(X+SQR(X^2-1))
(c) arctanh(X) = ln((1+X)/(1-X))/2
(d) arccsvh(X) = ln(1/X + SQR(X^2+1))
(e) arcsech(X) = ln(1/X + SQR(X^2-1)
(f) arccoth(X) = ln(1-X)/(1+X))/2
Go to Begin
*** J
Go to Begin
Q11. K
Go to Begin
Q12. L
Go to Begin
*** M
Multiple angles
cos(2*x) = 2*cos(x)^2 - 1 = 1 - 2*sin(x)^2
sin(2*x) = 2*sin(x)*cos(x)
tan(2*x) = 2*tan(x)/(1-tan(x)^2)
sin(3*x) = 3*sin(x) - 4*sin(x)^3
cos(3*x) =
Go to Begin
Q14. ***N
Go to Begin
Q15. ***O
Ortho-center : Altitudes of triangle are concurrent
Go to Begin
*** P
Parabola : Polar form
R = D/(1-sin(A)) : Open upward
R = D/(1+sin(A)) : Open downward
R = D/(1-cos(A)) : Open to right
R = D/(1+cos(A)) : Open to left
Parabola : y = a*x^2 + b*x + c
Vertex form : y - k = ((x - h)^2)/(2*D)
Vertex xv = h and yv = k
Distance from focus to directrix = D
Focus : xf = xv and yf = yv + D/2
Equation of directrix : y = yv - D/2
Locus : Point P to fixed point F and fixed line has same distance
Product of functions to sum of functions
sin(A)*sin(B) = (cos(A-B) - cos(A+B))/2.
cos(A)*cos(B) = (cos(A-B) + cos(A+B))/2.
sin(A)*cos(B) = (sin(A+B) - sin(A-B))/2.
cos(A)*sin(A) = (cos(A+B) + cos(A-B))/2.
Pythagorean law : Right triangle ABC c^2 = a^2 + b^2
Pythagorean relations
cos(x)^2 + sin(x)^2 = 1
tan(x)^2 + 1 = sec(x)^2
cot(x)^2 + 1 = csc(x)^2
Go to Begin
*** Q
Quadratic equation : y = F(x) = a*x^2 + b*x + c
Discriminant : D = b^2 - 4*a*c
Quadratic formula
x = (-b + Sqr(b^2-4*a*c))/(2*a)
x = (-b + Sqr(b^2-4*a*c))/(2*a)
Vertex : xv = -b/(2*a) and yv = F(xv) = (b^2 - 4*a*c)/(4*a)
y-intecept is c
Slope : y' = 2*a*x + b
Factor form : a*x^2 + b*x + c = (x - r)*(x - s)
r + s = -b/a
r*s = c/a
Go to Begin
*** R
Remainder theory : F(x) is dividied by (x-a), the remainder is F(a)
Go to Begin
*** S
Series : Binomial theory method
1. arctan(x) = x - (x^3)/3 + (x^5)/5 - ....
2. ln(1 + x) = x - (x^2)/2 + (x^3)/3 - ....
3. ln(1 - x) = x + (x^2)/2 + (x^3)/3 + ....
4. arcsin(x) = x - (x^3)/6 + 3*(x^5)/40 - 15*(x^7)/336 + ....
Series : Taylor theory method
e^(+x) = 1 + x + (x^2)/2! + (x^3)/3! + ....
e^(-x) = 1 - x + (x^2)/2! - (x^3)/3! + ....
sin(x) = x - (x^3)/3! + (x^5)/5! - .....
cos(x) = 1 - (x^2)/2! + (x^4)/4! - .....
sinh(x) = x + (x^3)/3! + (x^5)/5! + ....
cosh(x) = 1 + (x^2)/2! + (x^4)/4! + ....
Sine law : a = 2*R*sin(A)
Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
sin(A+B) = sin(A)*cos(B) + cos(A)*sin(B)
sin(A-B) = sin(A)*cos(B) - cos(A)*sin(B)
Sum of angles
1. sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y).
2. cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y).
3. tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)*tan(y)).
Sum or difference of functions to product
sin(A) + sin(B) = +2*sin((A+B)/2)*cos((A-B)/2).
sin(A) - sin(B) = +2*cos((A+B)/2)*sin((A-B)/2).
cos(A) + cos(B) = +2*cos((A+B)/2)*cos((A-B)/2).
cos(A) - cos(B) = -2*sin((A+B)/2)*sin((A-B)/2).
Go to Begin
Q20. ***T
Trigonometric equations : General solution of sin(x) = a
Principal solution : in 1st quadrant and x = arcsin(a)
In 1st quadrant : x = 2*n*pi + arcsin(a)
In 2nd quadrant : x = (2*n-1)*pi + arcsin(a)
Trigonometric equations : General solution of sin(x) = -a
Principal solution : in 1st quadrant and x = arcsin(a)
In 3rd quadrant : x = (2*n-1)*pi + arcsin(a)
In 4th quadrant : x = 2*n*pi - arcsin(a)
Trigonometric equations : General solution of cos(x) = a
Principal solution : in 1st quadrant and x = arccos(a)
In 1st quadrant : x = 2*n*pi + arccos(a)
In 4th quadrant : x = 2*n*pi - arccos(a)
Trigonometric equations : General solution of cos(x) = -a
Principal solution : in 1st quadrant and x = arccos(a)
In 2nd quadrant : x = (2*n-1)*pi - arccos(a)
In 3rd quadrant : x = (2*n-1)*pi + arccos(a)
Trigonometric equations : General solution of tan(x) = a
Principal solution : in 1st quadrant and x = arctan(a)
In 1st quadrant : x = 2*n*pi + arctan(a)
In 3rd quadrant : x = (2*n-1)*pi + arctan(a)
Trigonometric equations : General solution of tan(x) = -a
Principal solution : in 1st quadrant and x = arctan(a)
In 2nd quadrant : x = (2*n-1)*pi - arctan(a)
In 4th quadrant : x = 2*n*pi - arctan(a)
Trigonometric equations : General solution of sin(x)^2 = a
Principal solution : in 1st quadrant and x = arcsin(Sqr(a))
Angles in all 4 quadrants
x = n*pi + arcsin(a)
x = n*pi - arcsin(a)
Trigonometric equations : General solution of cos(x)^2 = a
Principal solution : in 1st quadrant and x = arccos(Sqr(a))
Angles in all 4 quadrants
x = n*pi + arccos(a)
x = n*pi - arccos(a)
Trigonometric equations : General solution of tan(x)^2 = a
Principal solution : in 1st quadrant and x = arctan(Sqr(a))
Angles in all 4 quadrants
x = n*pi + arctan(a)
x = n*pi - arctan(a)
Trigonometry : Sine law : a = 2*R*sin(A)
Trigonometry : Cosine law : a^2 = b^2 + c^2 - 2*b*c*cos(A)
Trigonometry : ex-circle
Tangent length AF = s
Ex-rdius r = s*tan(A/2)
Trigonometry : Half angles
sin(A/2) = Sqr((s-b)*(s-c)/(b*c)).
sin(B/2) = Sqr((s-c)*(s-a)/(c*a)).
sin(C/2) = Sqr((s-a)*(s-b)/(a*b)).
Trigonometry : Half angles
cos(A/2) = Sqr(s*(s-a)/(b*c)).
cos(B/2) = Sqr(s*(s-b)/(c*a)).
cos(C/2) = Sqr(s*(s-c)/(a*b)).
Trigonometry : Half angles
tan(A/2) = Sqr((s-b)*(s-c)/(s*(s-a)).
tan(B/2) = Sqr((s-c)*(s-a)/(s*(s-b)).
tan(C/2) = Sqr((s-a)*(s-b)/(s*(s-c)).
Heron formula : Area of triangle = Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
Trigonometry : In-circle
Tangent length AF = (s - a)
in-rdius r = (s - a)*tan(A/2)
Trigonometry : Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
Trigonometry : Sum of angles
1. sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y).
2. cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y).
3. tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)*tan(y)).
Trigonometry : Diference of angles
1. sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y).
2. cos(x-y) = cos(x)*cos(y) + sin(x)*(sin(y).
3. tan(x-y) = (tan(x) - tan(y))/(1 + tan(x)*tan(y)).
Trigonometry : Multiple angles
cos(2*x) = 2*cos(x)^2 - 1
sin(2*x) = 2*sin(x)*cos(x)
tan(2*x) = 2*tan(x)/(1-tan(x)^2)
Trigonometry : Half angle
cos(x/2) = Sqr((1 + cos(x))/2)
sin(x/2) = Sqr((1 - cos(x))/2)
tan(x) = Sqr((1 - cos(x))/(1 + cos(x)))
Trigonometry : Product of functions
sin(A)*sin(B) = (cos(A-B) - cos(A+B))/2.
cos(A)*cos(B) = (cos(A-B) + cos(A+B))/2.
sin(A)*cos(B) = (sin(A+B) - sin(A-B))/2.
cos(A)*sin(A) = (cos(A+B) + cos(A-B))/2.
Trigonometry : Sum or difference of functions
sin(A) + sin(B) = +2*sin((A+B)/2)*cos((A-B)/2).
sin(A) - sin(B) = +2*cos((A+B)/2)*sin((A-B)/2).
cos(A) + cos(B) = +2*cos((A+B)/2)*cos((A-B)/2).
cos(A) - cos(B) = -2*sin((A+B)/2)*sin((A-B)/2).
Go to Begin
*** U
Unit circle
Pythagorean relation : cos(x)^2 + sin(x)^2 =1
Equation x^2 + y^2 = 1
Parametric equation : x = cos(t) and y = sin(t)
Unit hyperbola
Pythagorean relation : tan(x)^2 + 1 = sec(x)^2
Equation : x^2 - y^2 = -1
Parametric equation : x = tan(t) and y = sec(t)
Go to Begin
*** V
Vertex of parabola : y = a*x^2 + b*x +c
xv = -b/(2*a)
yv = F(a) = (b^2 - 4*a*c)/(4*a)
Go to Begin
Q23. W
Go to Begin
Q24. X
Go to Begin
Q25. Y
Go to Begin
Q26. Z
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.