Counter
Mathematics Dictionary
Dr. K. G. Shih

Trigonometry
Formulae


A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |
Q | R | S | T | U | V | W | X | Y | Z |


*** A

  • Addition formula
    • 1. sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y).
    • 2. cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y).
  • arccos(cos(A)) = A
  • arcsin(sin(A)) = A
  • arctan(tan(A)) = A
  • Area of triangle
    • Area = Base*Height/2
    • Area = b*c*sin(A)/2
    • Area = Sqr(s*(s-a)*(s-b)*s-c))
    • Area = r*s where s = (a+b+c)/2 and r = in-radius
    • Area = r1*(s-a) where s = (a+b+c)/2 and r1 = ex-radius
    • Area = a*b*c/(4*R) where R = circum-radius and a,b,c are sides of triangle

    Go to Begin

    *** B

  • Binomial theory
    • coefficients C(n,r) = n*(n-1)*...*(n-r+1)/n! = (n!)/((r!)*(n-1)!)
    • C(n+1,r) = C(n,r-1) + C(n,r)
    • C(n,0) + C(n,1) + C(n,2) + ... + C(n,n) = n^2
  • Binomial theory
    • Sum[C(n+1),2] = C(n+2,3)
    • Sum[C(n+2),3] = C(n+3,4)
    • Sum[C(n+3),4] = C(n+4,5)

    Go to Begin

    ***C

  • cis(A) = cos(A) + i*sin(A)
  • Cosine law : a^2 = b^2 + c^2 - 2*b*c*cos(A)
  • cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B)
  • cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B)
  • co-function : (pi/2 - A) and (pi/2 + A)
    • sin(pi/2 - A) = +cos(A) and sin(pi/2 + A) = +cos(A)
    • cos(pi/2 - A) = +sin(A) and cos(pi/2 + A) = -sin(A)
    • tan(pi/2 - A) = +cot(A) and tan(pi/2 + A) = -cot(A)
  • co-function : (3*pi/2 - A) and (3*pi/2 + A)
    • sin(3*pi/2 - A) = -cos(A) and sin(3*pi/2 + A) = -cos(A)
    • cos(3*pi/2 - A) = -sin(A) and cos(3*pi/2 + A) = +sin(A)
    • tan(3*pi/2 - A) = +cot(A) and tan(3*pi/2 + A) = -cot(A)

    Go to Begin

    *** D

  • DeMoivre's theory
    • n is integer : (r*(cos(A) + i*sin(A)))^n = (r^n)*(cos(n*A) + i*sin(n*A))
    • n is negtive integer
      • (r*(cos(A) + sin(A)))^n = (r^n)*(cos(2*k*pi+A)/n) + i*sin(2*k*pi+A)/n)
      • Where k = 0, 1, 2, ... (n-1)
  • Diference of angles
    • 1. sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y).
    • 2. cos(x-y) = cos(x)*cos(y) + sin(x)*(sin(y).
    • 3. tan(x-y) = (tan(x) - tan(y))/(1 + tan(x)*tan(y)).

    Go to Begin

    *** E

  • Ellipse : Polar form
    • R = D*e/(1-e*sin(A)) : Focus at bottom as origin
    • R = D*e/(1+e*sin(A)) : Focus at top as origin
    • R = D*e/(1-e*cos(A)) : Focus at left as origin
    • R = D*e/(1+e*cos(A)) : Focus at right as origin
  • Ellipse : (x/a)^2 + (y/b)^2 = 1 or ((x-h)/a)^2 + ((y-k)/b)^2 = 1
    • Center : (0,0) or (h,k)
    • Principal axis
      • y = 0 if a GT b
      • x = 0 if a LT b
    • Vertices : (h-a,k) and (h,h+a)
    • Focal length f = Sqr(a^2 - b^2)
    • Distance from one focus to directrix = D
    • Focus : (-f,0) and (f,0)
    • Equation of directrix : ?
    • Locus : sum of distance from point P to 2 fixed points equals 2*a
  • Ellipse : Parametric equation
    • x = h + a*cos(x) and y = k + b*sin(x)
  • Equation theory
    • Quadratic equation a*x^2 + b*x + c = 0 : Roots r1,r2
      • Sum of roots = Coefficient of x : r1 + r2 = -b/a or 1/r1 + 1/r2 = -b/c
      • Product of roots = Constant term : r1*r2 = c/a
    • Cubic equation a*x^3 + b*x^2 + c*x + d = 0 : Roots r1,r2,r3
      • Sum of roots = coeff of x^2 : r1 + r2 + r3 = -b/a
      • Coeff of x : r1*r2 + r1*r3 + r2*r3 = c/a
      • Constant term : r1*r2*r3 = -d/a
  • Ex-central triangle JKL
    • Side : KJ = 4*R*cos(A/2). (Note A on LK)
    • Side : LK = 4*R*cos(B/2). (Note B on JL)
    • Side : JL = 4*R*cos(C/2). (Note C on KJ)
    • Coordinate of ex-center J (s, s*tan(A/2))
    • Area of JKL = 8*(R^2)*cos(A/2)*cos(B/2)*cos(C/2)
    • Circum-radius of JKL = 2*(circum-radius of ABC) = 2*R
  • Ex-circle
      Tangent length AF = s
    • Ex-rdius r = s*tan(A/2)

    Go to Begin

    *** F

  • Factor theory : If F(a) = 0, (x-a) is a factor of F(x)
  • Function : (pi - A) and (pi + A)
    • sin(pi - A) = +sin(A) and sin(pi + A) = -sin(A)
    • cos(pi - A) = -cos(A) and cos(pi + A) = -cos(A)
    • tan(pi - A) = -tan(A) and tan(pi + A) = +tan(A)
  • Function : (2*pi - A) and (2*pi + A)
    • sin(2*pi - A) = -sin(A) and sin(2*pi + A) = +sin(A)
    • cos(2*pi - A) = +cos(A) and cos(2*pi + A) = +cos(A)
    • tan(2*pi - A) = -tan(A) and tan(2*pi + A) = +tan(A)
  • Function : Negative angle A
    • sin(-A) = -sin(A), odd function
    • cos(-A) = +cos(A), even function
    • tan(-A) = -tan(A), odd function

    Go to Begin

    Q07. ***G


    Go to Begin

    *** H

  • Half angle
    • cos(x/2) = Sqr((1 + cos(x))/2)
    • sin(x/2) = Sqr((1 - cos(x))/2)
    • tan(x) = Sqr((1 - cos(x))/(1 + cos(x)))
  • Half angles
    • sin(A/2) = Sqr((s-b)*(s-c)/(b*c)).
    • sin(B/2) = Sqr((s-c)*(s-a)/(c*a)).
    • sin(C/2) = Sqr((s-a)*(s-b)/(a*b)).
  • Half angles
    • cos(A/2) = Sqr(s*(s-a)/(b*c)).
    • cos(B/2) = Sqr(s*(s-b)/(c*a)).
    • cos(C/2) = Sqr(s*(s-c)/(a*b)).
  • Half angles
    • tan(A/2) = Sqr((s-b)*(s-c)/(s*(s-a)).
    • tan(B/2) = Sqr((s-c)*(s-a)/(s*(s-b)).
    • tan(C/2) = Sqr((s-a)*(s-b)/(s*(s-c)).
  • Heron formula : Area of triangle = Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
  • Hyperbola : Polar form
    • R = D*e/(1-e*sin(A)) : Focus at bottom as origin
    • R = D*e/(1+e*sin(A)) : Focus at top as origin
    • R = D*e/(1-e*cos(A)) : Focus at left as origin
    • R = D*e/(1+e*cos(A)) : Focus at right as origin
  • Hyperbola : (x/a)^2 - (y/b)^2 = 1 or ((x-h)/a)^2 - ((y-k)/b)^2 = 1
    • Center : (0,0) or (h,k)
    • Principal axis
      • y = k if a GT b
      • x = h if a LT b
    • Vertices : (h-a,k) and (h,h+a)
    • Focal length f = Sqr(a^2 + b^2)
    • Distance from one focus to directrix = D
    • Focus : (-f,0) and (f,0)
    • Equation of directrix : ?
    • Locus : difference of distance from point P to 2 fixed points equals 2*a
  • Hyperbola : Parametric equation
    • x = h + a*sec(x) and y = k + b*tan(x)
  • Hyperbolic function
    • sinh(x) = ((e^x) - e^(-x))/2
    • cosh(x) = ((e^x) + e^(-x))/2
    • tanh(x) = sinh(x)/cosh(x)
    • csch(x) = 1/sinh(x)
    • tanh(x) = 1/cosh(x)
    • tanh(x) = cosh(x)/sinh(x)
  • Hypeebolic function : Inverse (see inverse hyperbolic function)
    Go to Begin

    *** I

  • In-circle
      Tangent length AF = (s - a)
    • in-rdius r = (s - a)*tan(A/2)
  • Inverse functions
    • 1. arcsin(sin(A)) = A
    • 2. arccos(sin(A)) = A
    • 3. arctan(sin(A)) = A
    • 4. arccsc(sin(A)) = A
    • 5. arcsec(sin(A)) = A
    • 6. arccot(sin(A)) = A
  • Inverse functions
    • 1. sin(arcsin(x)) = x
    • 2. cos(arccos(x)) = x
    • 3. tan(arctan(x)) = x
    • 4. csc(arccsc(x)) = x
    • 5. sec(arcsec(x)) = x
    • 6. cot(arccot(x)) = x
  • Inverse hyperbolic functions
    • (a) arcsinh(X) = ln(X+SQR(X^2+1))
    • (b) arccosh(X) = ln(X+SQR(X^2-1))
    • (c) arctanh(X) = ln((1+X)/(1-X))/2
    • (d) arccsvh(X) = ln(1/X + SQR(X^2+1))
    • (e) arcsech(X) = ln(1/X + SQR(X^2-1)
    • (f) arccoth(X) = ln(1-X)/(1+X))/2

    Go to Begin

    *** J


    Go to Begin

    Q11. K


    Go to Begin

    Q12. L


    Go to Begin

    *** M

  • Multiple angles
    • cos(2*x) = 2*cos(x)^2 - 1 = 1 - 2*sin(x)^2
    • sin(2*x) = 2*sin(x)*cos(x)
    • tan(2*x) = 2*tan(x)/(1-tan(x)^2)
    • sin(3*x) = 3*sin(x) - 4*sin(x)^3
    • cos(3*x) =

    Go to Begin

    Q14. ***N


    Go to Begin

    Q15. ***O

  • Ortho-center : Altitudes of triangle are concurrent
    Go to Begin

    *** P

  • Parabola : Polar form
    • R = D/(1-sin(A)) : Open upward
    • R = D/(1+sin(A)) : Open downward
    • R = D/(1-cos(A)) : Open to right
    • R = D/(1+cos(A)) : Open to left
  • Parabola : y = a*x^2 + b*x + c
    • Vertex form : y - k = ((x - h)^2)/(2*D)
    • Vertex xv = h and yv = k
    • Distance from focus to directrix = D
    • Focus : xf = xv and yf = yv + D/2
    • Equation of directrix : y = yv - D/2
    • Locus : Point P to fixed point F and fixed line has same distance
  • Product of functions to sum of functions
    • sin(A)*sin(B) = (cos(A-B) - cos(A+B))/2.
    • cos(A)*cos(B) = (cos(A-B) + cos(A+B))/2.
    • sin(A)*cos(B) = (sin(A+B) - sin(A-B))/2.
    • cos(A)*sin(A) = (cos(A+B) + cos(A-B))/2.
  • Pythagorean law : Right triangle ABC c^2 = a^2 + b^2
  • Pythagorean relations
    • cos(x)^2 + sin(x)^2 = 1
    • tan(x)^2 + 1 = sec(x)^2
    • cot(x)^2 + 1 = csc(x)^2

    Go to Begin

    *** Q

  • Quadratic equation : y = F(x) = a*x^2 + b*x + c
    • Discriminant : D = b^2 - 4*a*c
    • Quadratic formula
      • x = (-b + Sqr(b^2-4*a*c))/(2*a)
      • x = (-b + Sqr(b^2-4*a*c))/(2*a)
    • Vertex : xv = -b/(2*a) and yv = F(xv) = (b^2 - 4*a*c)/(4*a)
    • y-intecept is c
    • Slope : y' = 2*a*x + b
    • Factor form : a*x^2 + b*x + c = (x - r)*(x - s)
      • r + s = -b/a
      • r*s = c/a

    Go to Begin

    *** R

  • Remainder theory : F(x) is dividied by (x-a), the remainder is F(a)
    Go to Begin

    *** S

  • Series : Binomial theory method
    • 1. arctan(x) = x - (x^3)/3 + (x^5)/5 - ....
    • 2. ln(1 + x) = x - (x^2)/2 + (x^3)/3 - ....
    • 3. ln(1 - x) = x + (x^2)/2 + (x^3)/3 + ....
    • 4. arcsin(x) = x - (x^3)/6 + 3*(x^5)/40 - 15*(x^7)/336 + ....
  • Series : Taylor theory method
    • e^(+x) = 1 + x + (x^2)/2! + (x^3)/3! + ....
    • e^(-x) = 1 - x + (x^2)/2! - (x^3)/3! + ....
    • sin(x) = x - (x^3)/3! + (x^5)/5! - .....
    • cos(x) = 1 - (x^2)/2! + (x^4)/4! - .....
    • sinh(x) = x + (x^3)/3! + (x^5)/5! + ....
    • cosh(x) = 1 + (x^2)/2! + (x^4)/4! + ....
  • Sine law : a = 2*R*sin(A)
  • Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
  • sin(A+B) = sin(A)*cos(B) + cos(A)*sin(B)
  • sin(A-B) = sin(A)*cos(B) - cos(A)*sin(B)
  • Sum of angles
    • 1. sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y).
    • 2. cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y).
    • 3. tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)*tan(y)).
    Sum or difference of functions to product
    • sin(A) + sin(B) = +2*sin((A+B)/2)*cos((A-B)/2).
    • sin(A) - sin(B) = +2*cos((A+B)/2)*sin((A-B)/2).
    • cos(A) + cos(B) = +2*cos((A+B)/2)*cos((A-B)/2).
    • cos(A) - cos(B) = -2*sin((A+B)/2)*sin((A-B)/2).

    Go to Begin

    Q20. ***T

  • Trigonometric equations : General solution of sin(x) = a
    • Principal solution : in 1st quadrant and x = arcsin(a)
    • In 1st quadrant : x = 2*n*pi + arcsin(a)
    • In 2nd quadrant : x = (2*n-1)*pi + arcsin(a)
  • Trigonometric equations : General solution of sin(x) = -a
    • Principal solution : in 1st quadrant and x = arcsin(a)
    • In 3rd quadrant : x = (2*n-1)*pi + arcsin(a)
    • In 4th quadrant : x = 2*n*pi - arcsin(a)
  • Trigonometric equations : General solution of cos(x) = a
    • Principal solution : in 1st quadrant and x = arccos(a)
    • In 1st quadrant : x = 2*n*pi + arccos(a)
    • In 4th quadrant : x = 2*n*pi - arccos(a)
  • Trigonometric equations : General solution of cos(x) = -a
    • Principal solution : in 1st quadrant and x = arccos(a)
    • In 2nd quadrant : x = (2*n-1)*pi - arccos(a)
    • In 3rd quadrant : x = (2*n-1)*pi + arccos(a)
  • Trigonometric equations : General solution of tan(x) = a
    • Principal solution : in 1st quadrant and x = arctan(a)
    • In 1st quadrant : x = 2*n*pi + arctan(a)
    • In 3rd quadrant : x = (2*n-1)*pi + arctan(a)
  • Trigonometric equations : General solution of tan(x) = -a
    • Principal solution : in 1st quadrant and x = arctan(a)
    • In 2nd quadrant : x = (2*n-1)*pi - arctan(a)
    • In 4th quadrant : x = 2*n*pi - arctan(a)
  • Trigonometric equations : General solution of sin(x)^2 = a
    • Principal solution : in 1st quadrant and x = arcsin(Sqr(a))
    • Angles in all 4 quadrants
    • x = n*pi + arcsin(a)
    • x = n*pi - arcsin(a)
  • Trigonometric equations : General solution of cos(x)^2 = a
    • Principal solution : in 1st quadrant and x = arccos(Sqr(a))
    • Angles in all 4 quadrants
    • x = n*pi + arccos(a)
    • x = n*pi - arccos(a)
  • Trigonometric equations : General solution of tan(x)^2 = a
    • Principal solution : in 1st quadrant and x = arctan(Sqr(a))
    • Angles in all 4 quadrants
    • x = n*pi + arctan(a)
    • x = n*pi - arctan(a)
  • Trigonometry : Sine law : a = 2*R*sin(A)
  • Trigonometry : Cosine law : a^2 = b^2 + c^2 - 2*b*c*cos(A)
  • Trigonometry : ex-circle
      Tangent length AF = s
    • Ex-rdius r = s*tan(A/2)
  • Trigonometry : Half angles
    • sin(A/2) = Sqr((s-b)*(s-c)/(b*c)).
    • sin(B/2) = Sqr((s-c)*(s-a)/(c*a)).
    • sin(C/2) = Sqr((s-a)*(s-b)/(a*b)).
  • Trigonometry : Half angles
    • cos(A/2) = Sqr(s*(s-a)/(b*c)).
    • cos(B/2) = Sqr(s*(s-b)/(c*a)).
    • cos(C/2) = Sqr(s*(s-c)/(a*b)).
  • Trigonometry : Half angles
    • tan(A/2) = Sqr((s-b)*(s-c)/(s*(s-a)).
    • tan(B/2) = Sqr((s-c)*(s-a)/(s*(s-b)).
    • tan(C/2) = Sqr((s-a)*(s-b)/(s*(s-c)).
  • Heron formula : Area of triangle = Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
  • Trigonometry : In-circle
      Tangent length AF = (s - a)
    • in-rdius r = (s - a)*tan(A/2)
  • Trigonometry : Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
  • Trigonometry : Sum of angles
    • 1. sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y).
    • 2. cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y).
    • 3. tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)*tan(y)).
  • Trigonometry : Diference of angles
    • 1. sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y).
    • 2. cos(x-y) = cos(x)*cos(y) + sin(x)*(sin(y).
    • 3. tan(x-y) = (tan(x) - tan(y))/(1 + tan(x)*tan(y)).
  • Trigonometry : Multiple angles
    • cos(2*x) = 2*cos(x)^2 - 1
    • sin(2*x) = 2*sin(x)*cos(x)
    • tan(2*x) = 2*tan(x)/(1-tan(x)^2)
  • Trigonometry : Half angle
    • cos(x/2) = Sqr((1 + cos(x))/2)
    • sin(x/2) = Sqr((1 - cos(x))/2)
    • tan(x) = Sqr((1 - cos(x))/(1 + cos(x)))
  • Trigonometry : Product of functions
    • sin(A)*sin(B) = (cos(A-B) - cos(A+B))/2.
    • cos(A)*cos(B) = (cos(A-B) + cos(A+B))/2.
    • sin(A)*cos(B) = (sin(A+B) - sin(A-B))/2.
    • cos(A)*sin(A) = (cos(A+B) + cos(A-B))/2.
  • Trigonometry : Sum or difference of functions
    • sin(A) + sin(B) = +2*sin((A+B)/2)*cos((A-B)/2).
    • sin(A) - sin(B) = +2*cos((A+B)/2)*sin((A-B)/2).
    • cos(A) + cos(B) = +2*cos((A+B)/2)*cos((A-B)/2).
    • cos(A) - cos(B) = -2*sin((A+B)/2)*sin((A-B)/2).

    Go to Begin

    *** U

  • Unit circle
    • Pythagorean relation : cos(x)^2 + sin(x)^2 =1
    • Equation x^2 + y^2 = 1
    • Parametric equation : x = cos(t) and y = sin(t)
  • Unit hyperbola
    • Pythagorean relation : tan(x)^2 + 1 = sec(x)^2
    • Equation : x^2 - y^2 = -1
    • Parametric equation : x = tan(t) and y = sec(t)

    Go to Begin

    *** V

    Vertex of parabola : y = a*x^2 + b*x +c
    • xv = -b/(2*a)
    • yv = F(a) = (b^2 - 4*a*c)/(4*a)

    Go to Begin

    Q23. W


    Go to Begin

    Q24. X


    Go to Begin

    Q25. Y


    Go to Begin

    Q26. Z


    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1