Q01 |
- Bisector AD of triangle ABC : AD = 2*b*c*cos(A/2)/(b + c)
Q02 |
- Bisectors make angles x,y,z with sides. a*sin(2*x) +b*sin() + c*... = 0
Q03 |
- Unit circle : Radius AB and P a point on circle. PA^2 + PB^2 = ?
Q04 |
- Unit circle : Equilateral triangle ABC and P a point on circle.
Q05 |
- Unit circle : Square ABCD and P a point on circle.
Q06 |
- Unit circle : Regular hexagon ABCDEF and P a point on circle.
Q07 |
- Solve equations : sin(x)^3 = sin(y) and cos(x)^3 = cos(y)
Q08 |
- Solve equations : 2^(sin(x)+cos(y)) =0 and 16^(sin(x)^2 + cos(y)^2) =4
Q09 |
- Sketch y = cos(x) + sin(x) + Abs(cos(x) - sin(x))
Q10 |
- If cos(2*x) = sin(x) + Abs(sin(x)), find sin(x)
Q11 |
- Find (1 + tan(15))/(1 - tan(15)) without calculator
Q12 |
- Sketch y = cos(x) - Abs(cos(x)) between 0 and 2*pi
Q13 |
- Find S(n) = Sum[((1/2)^n)*cos(n*pi/2)] for n = 1 to infinite
Q14 |
- Find S(n) = Sum[((1/2)^n)*sin(n*pi/2)] for n = 1 to infinite
Q15 |
-
Answers
|
Q01. Bisector AD of triangle ABC : AD = 2*b*c*cos(A/2)/(b + c)
Hint
- Use area of triangle = b*c*sin(A)/2
Solution
- Area ABC = b*c*sin(A)/2
- Area ABD = c*AD*sin(A/2)/2
- Area ACD = b*AD*sin(A/2)/2
- Area ABC = Area ABD + area ACD
- b*c*sin(A)/2 = c*AD*sin(A/2)/2 + b*AD*sin(A/2)/2
- sin(A) = 2*sin(A/2)*cos(A/2)
- b*c*sin(A/2)*cos(A/2) = AD*(c + b)*sin(A/2)/2
- AD = 2*b*c*cos(A/2)/(b + c)
Go to Begin
Q02. Bisectors make angle x,y,z with sides.
Construction
- Draw triangle ABC
- Bisector AD make angle ADB = x
- Bisector BE make angle BEC = y
- Bisector CF make angle CFA = y
Keywrods
- sin(A+B)*sin(A-B) = cos(2*B) - cos(2*A)
Proof : a*sin(2*x) + b*sin(2*y) + c*sin(2*z) = 0
- In triangle ABD
- Angle x = 180 - B - A/2
- Angle x = C + A/D
- Hence 2*x = 180 - (B - C)
- Similarly : 2*y = 180 - (C - A) and 2*z = 180 - (A - B)
- a*sin(2*x) + b*sin(2*y) + c*sin(2*z)
- = 2*R*sin(A)*sin(B-C) + 2*R*sin(B)*sin(C-A) + 2*R*sin(C)*sin(A-B)
- = 2*R*sin(B+C)*sin(B-C) + 2*R*sin(C-A)*sin(C-A) + 2*R*sin(A+B)*sin(A-B)
- = R*(cos(2*C)-cos(2*b)+cos(2*A)-cos(2*C)+cos(2*B)*cos(2*A))
- = R*0
- = 0
Go to Begin
Q03. Unit circle : AB is diameter and P on circle, PA^2 + PB^2 = 2*2
Method 1 : Triangle APB is right triangle
- PA^2 + PB^2 = AB^2
- Since AB = 2
- Hence PA^2 + PB^2 = 4
Method 2 : Using cosine law
- Let O be the center. Then AO = PO = 1
- Triangle POA
- Let angle POA = x
- PA^2 = AO^2 + PO^2 - 2*AO*PO*cos(x) = 2 - 2*cos(x)
- Triangle POB
- Let angle POB = 180 - x
- PB^2 = BO^2 + PO^2 - 2*BO*PO*cos(180-x) = 2 + 2*cos(x)
- Hence PA^2 + PB^2 = 2*2
Go to Begin
Q04. Unit circle : Inscribed triangle ABC and P on circle, PA^2 +PB^2 +PC^2 =2*3
Using cosine law
- Let O be the center. Then AO = PO = 1
- Triangle POA
- Let angle POA = x
- PA^2 = AO^2 + PO^2 - 2*AO*PO*cos(x) = 2 - 2*cos(x)
- Triangle POB
- Let angle POB = 120 - x
- PA^2 = BO^2 + PO^2 - 2*BO*PO*cos(120-x) = 2 - 2*cos(120 - x)
- Triangle POC
- Let angle POC = 240 - x or 120 + x
- PC^2 = CO^2 + PO^2 - 2*CO*PO*cos(120+x) = 2 - 2*cos(120 + x)
- Hence PA^2 + PB^2 + PC^2 = 2*3 - 2*(cos(x) + cos(120-x) + cos(120+x))
- = 2*3 - 2*(cos(x) + 2*cos(120)*cos(x))
- = 2*3
Go to Begin
Q05. Unit circle : Inscribed Square ABCD and P on circle, PA^2 +PB^2 +PC^2 =2*3
Using cosine law
- Let O be the center. Then AO = PO = 1
- Triangle POA
- Let angle POA = x
- PA^2 = AO^2 + PO^2 - 2*AO*PO*cos(x) = 2 - 2*cos(x)
- Triangle POB
- Let angle POB = 90 - x
- PA^2 = BO^2 + PO^2 - 2*BO*PO*cos(90-x) = 2 - 2*sin(x)
- Triangle POC
- Let angle POC = 180 - x
- PC^2 = CO^2 + PO^2 - 2*CO*PO*cos(180+x) = 2 + 2*cos(x)
- Triangle POD
- Let angle POD = 270 - x or 90 + x
- PC^2 = CO^2 + PO^2 - 2*CO*PO*cos(90+x) = 2 + 2*sin(x)
- Hence PA^2 + PB^2 + PC^2 + PD^2
- = 2*4 - 2*(cos(x) + sin(x) - cos(x) - sin(x))
- = 2*4
Go to Begin
Q06. Unit circle : Regular hexagon ABCDEF and P a point on circle
Using cosine law
- Let O be the center. Then AO = PO = 1
- Triangle POA
- Let angle POA = x
- PA^2 = AO^2 + PO^2 - 2*AO*PO*cos(x) = 2 - 2*cos(x)
- Angle POB = 1*60 - x, PB^2 = 2 - 2*cos(60-x)
- Angle POC = 2*60 - x, PC^2 = 2 - 2*cos(120-x)
- Angle POD = 3*60 - x, PD^2 = 2 - 2*cos(180-x)
- Angle POE = 4*60 - x, PE^2 = 2 - 2*cos(240-x)
- Angle POF = 5*60 - x, PF^2 = 2 - 2*cos(300-x)
- using sum to product formula
- PA^2 + PB^2 + PC^2 + PD^2 + PE^2 + PF^2 = 2*6 - 2(....) = 2*6
Go to Begin
Q07. Solve equations : sin(x)^3 = sin(y) and cos(x)^3 = cos(y)
Solution
- Squre both sides of two equations
- sin(x)^6 = sin(y)^2
- cos(x)^6 = cos(y)^2
- Add them : sin(x)^6 + cos(x)^6 = sin(y)^2 + cos(y)^2 = 1
- (sin(x)^2 +cos(x)^2)^3 = cos(x)^6 +sin(x)^6 +3*sin(x)*cos(x)*(cos(x)+sin(x))
- 1 = 1 + 3*sin(x)*cos(x)*(cos(x)+sin(x))
- 3*sin(x)*cos(x)*(cos(x)+sin(x)) = 0
- sin(x) = 0 and x = n*pi
- cos(x) = 0 and x = n*pi+pi/2
- sin(x) + cos(x) = 0
- tan(x) = -1.
- Hence x = (2*n+1)*pi - pi/4 in 2nd quadrant
- Hence x = (2*n)*pi - pi/4 in 4th quadrant
- Or combine above, we have x = n*pi - pi/4
Go to Begin
Q08. Solve equations : 2^(sin(x)+cos(y)) = 0 and 16^(sin(x)^2 + cos(y)^2) = 4
- Sine 2^0 = 1 and 16^2 = 4^2
- Hence sin(x) + cos(y) = 0 ...... (1)
- 2*(sin(x)^2 + cos(y)^2) = 1 .... (2)
- (2) - equare of (1) : (sin(x) - cos(y))^2 = 1
- sin(x) - cos(y) = +1 ... (3)
- sin(x) - cos(y) = -1 ... (4)
- Solve (1) and (3)
- sin(x) = +1/2 and x = 2*n*pi + pi/6 or x = (2*n+1)*pi - pi/6
- cos(y) = -1/2 and y = (2*n+1)*pi - pi/6 or y = (2*n+1)*pi + pi/6
- Solve (1) and (4)
- sin(x) = -1/2
- cos(y) = +1/2 and y = 2*n*pi + pi/6 or y = 2*n*pi - pi/6
Go to Begin
Q09. Sketch y = (cos(x) + sin(x))/2 + Abs(cos(x) - sin(x))/2
Hint
- Abs(+sin(x)) = +sin(x)
- Abs(-sin(x)) = -(-sin(x)) = sin(x)
Sketch notes
- If 0 GT x LT pi/4, cos(x) GT sin(x)
- Sqr(cos(x) - sin(x)) = +(cos(x) - sin(x))
- y = (cos(x) + sin(x))/2 + (cos(x) - sin(x))/2 = cos(x)
- Hence the sketch is y = cos(x)
- If pi/4 GT x LT 5*pi/4, cos(x) LT sin(x)
- Sqr(cos(x) - sin(x)) = -(cos(x) - sin(x))
- y = (cos(x) + sin(x))/2 - (cos(x) - sin(x))/2 = sin(x)
- Hence the sketch is y = sin(x)
- If 5*pi/4 GT x LT 2*pi, cos(x) GT sin(x)
- Sqr(cos(x) - sin(x)) = +(cos(x) - sin(x))
- y = (cos(x) + sin(x))/2 + (cos(x) - sin(x))/2 = cos(x)
- Hence the sketch is y = cos(x)
Go to Begin
Q10. If cos(2*x) = sin(x) + Abs(sin(x)), find sin(x)
Solution
- 0 GT x LT pi and sin(x) GT 0 : Sqr(sin(x)) = +sin(x)
- cos(2*x) = sin(x) + sin(x)
- 1 - 2*sin(x)^2 = 2*sin(x)
- 2*sin(x)^2 + 2*sin(x) - 1 = 0
- Hence sin(x) = (-2 + Sqr(2^2 - 4*2*(-1))/(2*2) = (-1 + Sqr(3))/2
- Or sin(x) = (-2 - Sqr(2^2 - 4*2*(-1))/(2*2) = (-1 - Sqr(3))/2
- pi GT x LT 2*pi and sin(x) LT 0 : Sqr(sin(x)) = -sin(x)
- cos(2*x) = sin(x) - sin(x)
- 1 - 2*sin(x)^2 = 0
- 2*sin(x)^2 = 1
- Hence sin(x) = 1/Sqr(2) = Sqr(2)/2
- Or sin(x) = -Sqr(2)/2
Go to Begin
Q11. Find (1 + tan(15))/(1 - tan(15)) without calculator
Keyword
- tan(A+B) = (tan(A)+tan(B))/(1 - tan(A)*tan(B))
- tan(45) = 1
Proof
- (1 + tan(15))/(1 - tan(15))
- = (tan(45) + tan(15))/(1 - tan(45)*tan(15))
- = tan(45 + 15)
- = tan(60)
- = Sqr(3)
Go to Begin
Q12. Sketch y = cos(x) - Abs(cos(x)) between 0 and 2*pi
Keyword
Sketch notes
- if cos(x) GT 0, then Abs(cos(x)) = cos(x)
- If cos(x) LT 0, then Abs(cos(x)) = -cos(x)
- 0 to pi/2, cos(x) is positive
- y = cos(x) - Abs(cos(x)) = cos(x) - cos(x) = 0
- Hence between 0 and pi/2, the sketch is y = 0
- pi/2 to 3*pi/2, cos(x) is negative
- y = cos(x) - Abs(cos(x)) = cos(x) - (-cos(x)) = 2*cos(x)
- Hence between pi/2 and 3*pi/2, the sketch is y = 2*cos(x)
- 3*pi/2 to 2*pi, cos(x) is positive
- y = cos(x) - Abs(cos(x)) = cos(x) - cos(x) = 0
- Hence between 3*pi/2 and 2*pi, the sketch is y = 0
Go to Begin
Q13. Find S(n) = Sum[((1/2)^n)*cos(n*pi/2)] for n = 1 to infinite
Keywords
- cos(n*pi/2) = +0, if n is odd
- cos(n*pi/2) = -1, if n is 2,6,10, ...
- cos(n*pi/2) = +1, if n is 4,8,12, ...
- GP : S(n) = a/(1 - r) if n goes to infinite and a is 1st term
Solution
- S(n) = Sum[((1/2)^n)*cos(n*pi/2)]
- = 0 - (1/2)^2 + 0 + (1/2)^4 + 0 - (1/2)^6 + ....
- = -((1/2)^2)*(1 - (1/2)^2 + (1/2)^4 - .....)
- Since common ratio = -(1/2)^2
- Hence S(n) = (-1/4)*(1/(1 + (1/2)^2))
- = (-1/4)*(4/5)
- = -1/5
Go to Begin
Q14. Find S(n) = Sum[((1/2)^n)*sin(n*pi/2)] for n = 1 to infinite
Keywords
- sin(n*pi/2) = +1, if n is 1, 5, 9, ....
- sin(n*pi/2) = -1, if n is 3, 7, 11, ...
- sin(n*pi/2) = +0, if n is even
- GP : S(n) = a/(1 - r) if n goes to infinite and a is 1st term
Solution
- S(n) = Sum[((1/2)^n)*sin(n*pi/2)]
- = (1/2) + 0 - (1/2)^3 + 0 + (1/2)^5 + 0 - (1/2)^7 + ....
- = (1/2)*(1 - (1/2)^2 + (1/2)^4 - .....)
- Since common ratio = -(1/2)^2
- Hence S(n) = (1/2)*(1/(1 + (1/2)^2))
- = (1/2)*(4/5)
- = 2/5
Go to Begin
Q15.
Go to Begin
|
|