Welcome to Mathematics Dictionary
Figure 117 - Equilateral triangle : BF = FG = GC

    Figure 117 : Divide line into 3 equal parts


  • Q01 | - Diagram
  • Q02 | - Equilateral triangle - Divide side into 3 equal parts
  • Q03 | - Formula used
  • Q04 | - Other method


    Q01. Diagram

    Equilateral triangle - Divide side into 3 equal parts


    Go to Begin


  • Q02. Equilateral triangle - Divide side into 3 equal parts

    Keywords
    • Properties of equilateral triangle
    • Properties of hexagon
    • Law of cosine and law of sine
    Construction
    • Draw an equilateral triangle ABC
    • Use BC as diameter to draw a semi-circle below BC with center O
    • Divide the semi-circle into 3 equal arcs : Arc BD = arc DE = arc EC
    • Join AD and cut BC at F
    • Join AE and cut BC at G
    • Then BF = FG = GC
    Proof
    • Let BC = AB = 2
    • By construction BD is one side of regular hexagon
      • Hence BD = 1 and angle FBD = 60
    • Hence angle ABD = ABF + FBD = 60 + 60 = 120 degrees
    • In triangle ABD, find AD by cosine law
      • We know AB = 2, angle ABD = 120 degrees and BD = 1.
      • AD^2 = AB^2 + BD^2 - 2*AB*BD*cos(ABD)
      • AD^2 = 2^2 + 1^2 - 2*2*1*cos(120)
      • AD^2 = 5 - 4*(-1/2)
      • AD^2 = 7 or AD = Sqr(7)
    • In triangle ABD, we can find angle BAD by sine law
      • BD/sin(BAD) = AD/sin(ABD)
      • Hence sin(BAD)
      • = BD*sin(ABD)/AD
      • = 1*sin(120)/Sqr(7)
      • = (Sqr(3)/2)/(Sqr(7))
      • = Sqr(3)/(2*Sqr(7) ............... (1)
      • Use sin(x)^2 + cos(x)^2 = 1, we have
      • cos(BAD)
      • = Sqr(1 - sin(BAD)^2)
      • = Sqr(1 - 3/28)
      • = 5/Sqr(28) ...................... (2)
    • In right triangle AOF where AO perpendicular to BC, find AF
      • AO = Sqr(AB^2 - (BC/2)^2) = Sqr(3)
      • Angle FAO = 30 - angle BAF
      • cos(FAO) = cos(30 - BAF)
      • = cos(30)*cos(BAF) + sin(30)*sin(BAF)
      • Substitute (1) and (2) into above expression
      • cos(FAO) = (Sqr(3)/2)*(Sqr(25/28)) + (1/2)*(1/(2*Sqr(7))
      • = (5*Sqr(3)/(2*Sqr(28)) + 1/(4*Sqr(7))
      • = (5 + 1)/(4*Sqr(7))
      • = 3/(2*Sqr(7)) ............................. (3)
      • Since triangle is right triangle
      • hence AF = AO/cos(FAO)
      • Substitute (3) into above we have
      • AF = (Sqr(3)*2*Sqr(7))/3 = 2*Sqr(21)/3 ..... (4)
    • In triangle ABF, we use sine law again to find BF
      • BF/sin(BAF) = AF/sin(60)
      • Substitute (1) and (4) into above expression
      • BF = (1/(2*Sqr(7))*(2*Sqr(21)/3)/(Sqr(3)/2)
      • = (2*Sqr(21)/(6*Sqr(7))/(Sqr(3)/2)
      • = (4*Sqr(21))/(6*Sqr(21))
      • = 2/3
      • = BC/3 where we assume BC = 2

    Go to Begin

    Q03. Formula
    • 1. cosine law : a^2 = b^2 + c^2 - 2*b*c*cos(A)
    • 2. sine law : a/sin(A) = b/sin(B) = c/sin(C) = 2*R

    Go to Begin

    Q04. Other method : Divide line AB into 3 equal parts
    • 1. Draw line AB
    • 2. Draw line AC
    • 3. Produce AC to D and let CD = AC
    • 4. Produce AD to E and let DE = AC
    • 5. Join BE
    • 6. Draw line DP parallel to BE
    • 7. Draw line CQ parallel to BE
    • 8. Then AP = PQ = QB

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

    1