Mathematics Dictionary
Dr. K. G. Shih
Figure 308 : Ellipse in rectangular form
Q01 |
- Diagram : Ellipse in rectangular form
Q02 |
- Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y - 191 = 0
Q03 |
- Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y + 34 = 0
Q04 |
- Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y + 50 = 0
Q05 |
- Parametric form
Q06 |
- Reference
Q01. Diagram : Ellipse in rectangular form
Go to Begin
Q02. Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y - 191 = 0
Question
1. Find seme-axese and focal length
2. Find coordinates of coci and vertices
Solution
Use completing the square
9*(x^2 - 2*x + 1 - 1) + 25*(y^2 + 2*y + 1 - 1) = 191
9*(x - 1)^2 - 9 + 25*(y + 1)^2 - 25 = 191
9*(x - 1)^2 + 25*(y + 1)^2 = 191 + 9 + 25
9*(x - 1)^2 + 25*(y + 1)^2 = 225
((x - 1)/5)^2 + ((y + 1)/3)^2 = 1
Hence semi-axese : a = 5 and b = 3
Focal length f = Sqr(a^2 - b^2) = 4
Find the coordinate of foci and vertices
Center (1, -1)
Focus F at (1 - 4, -1) or (-3, -1)
Focus G at (1 + 4, -1) or (+5, -1)
Vertex U at (1 - 5, -1) or (-4, -1)
Vertex V at (1 + 5, -1) or (+6, -1)
Go to Begin
Q03. Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y + 34 = 0
Solution
Use completing square to convert it to standard form
9*(x - 1)^2 + 25*(y + 1)^2 - 9 - 25 + 34 = 0
9*(x - 1)^2 + 25*(y + 1)^2 = 0
Hence the locus is a point at (1, -1)
Go to Begin
Q04. Find locus of 9*x^2 + 25*y^2 - 9*x + 50*y + 50 = 0
Solution
Use completing square to convert it to standard form
9*(x - 1)^2 + 25*(y + 1)^2 - 9 - 25 + 50 = 0
9*(x - 1)^2 + 25*(y + 1)^2 = -16
Since the equation is not existed in real number system
Hence there is no locus in real number system
Go to Begin
Q05. Parametric form
Question
Prove that x = h + a*cos(t) and y = k + b*sin(t) is an ellipse
Since ((x - h)/a)^2 + ((y - k)/b)^2 = cos(t)^2 + sin(t)^2
We know that cos(t)^2 + sin(t)^2 = 1
Hence ((x - h)/a)^2 + ((y - k)/b)^2 = 1
This is an equation of ellipse
Go to Begin
Q06. Reference
Reference
Analytic Geometry
AN 07 01 and AN 07 02
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.