Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 317 : Hyperbola R = (D*e)/(1 - e*cos(A))

  • Q01 | - Diagram : R = (D*e)/(1 - e*cos(A))
  • Q02 | - Directrix
  • Q03 | - Convert (x/a)^2 - (y/b)^2 = 1 to polar form
  • Q04 | - Convert R = (D*e)/(1 - e*cos(A)) to rectangular form
  • Q05 | - Convert (x/4)^2 - (y/3)^2 = 1 to polar form
  • Q06 | - Convert R = 2.25/(1 + 1.25*cos(A)) to rectangular form
  • Q07 | - Reference


Q01. Diagram :


Go to Begin

Q02. Directrix

Defintion
  • R = point P(x, y) to focus (0, 0)
  • D = distance from focus to directrix
  • D + x = distance from P to directrix
  • R/(R + x) = e is hperbola if e > 1
  • Where e = f/a
  • Since x = R*cos(A)
  • Hence R = (D*e)/(1 - e*cos(A))
Find D
  • From diagram we see that FU = f - a
  • When A = 180, R = FU = (D*e)/(1 + e)
  • Hence D*e = (f - a)*(1 + e)
  • Since e = f/a
  • Hence D*e = (f - a)*(1 + f/a)
  • Hence D*e = (f^2 - a^2)/a
  • Hence D*e = (b^2)/a

Go to Begin

Q03. Convert (x/a)^2 - (y/b)^2 = 1 to polar form

Method 1 : Find D and e
  • Corresponding form
    • R = (D*e)/(1 - e*cos(A)) : The center at (f, 0)
    • ((x - f)/a)^2 + (y/b)^2 = 1 : The center at (f, 0)
    • (x/a)^2 + (y/b)^2 = 1 : The center at (0, 0)
  • Since the translation from (0, 0) to (f, 0), the diagram is no change
  • Hence we know that the polar form is R = (D*e)/(1 - e*cos(A))
Method 2 : Use polar coordinates
  • R = D*e/(1 - e*cos(A))
    • The focal point is at F(0, 0)
    • The center is at (f, 0)
    • Hence rectangular form is ((x - f)/a)^2 - (y/b)^2 = 1
  • Remove denominator and simplify
    • (b^2)*(x + f)^2 + (a^2)*(y^2) = (a^2)*b*2.
    • (b^2)*(x^2) + (b^2)*x*f + (b^2)*(f^2) + (a^2)*(y^2) = (a^2)*(b^2)
    • Since b^2 = f^2 - a^2.
    • Hence (b^2)*(x^2) + (a^2)*(y^2) + 2*(b^2)*x*f = (a^2)*(b^2) - (b^2)*(f^2)
    • -(a^2 - f^2)*(x^2) + (a^2)*(y^2) + 2*(b^2)*x*f = -(b^2)*(a^2 - f^2)
  • Polar coordiantes
    • x = R*cos(A)
    • y = R*sin(A)
    • R^2 = x^2 + y^2
  • Substitute polar coordinates into above equation
    • (x^2 + y^2)*(a^2) - (f^2)*(x^2) + 2*(b^2)*x*f = b^4
    • (R^2)*(a^2) - (f^2)*(x^2) + 2*(b^2)*x*f - b^4 = 0
    • (R^2)*(a^2) - ((f^2)*(x^2) - 2*(b^2)*x*f + b^4) = 0
    • (R^2)*(a^2) - (f*x - b^2)^2 = 0
    • R*a = f*x - b^2
  • Since x = R*cos(A)
  • Hence R*a - R*f*cos(A) = b^2
  • R*(a - f*cos(A)) = b^2
  • R*(1 - f*cos(A)/a) = (b^2)/a
  • Since e = f/a and D*e = (b^2)/a
  • Hence R = (D*e)/(1 - e*cos(A))

Go to Begin

Q04. Convert R = (D*e)/(1 - e*cos(A)) to rectangular form

Solution : Use D
  • The corresponding form
    • Rectangular form : ((x - f)/a)^2 - (y/b)^2 = 1
    • Polar form : R = (D*e)/(1 - e*cos(A))
  • Since center at (0, 0) : (x/a)^2 - (y/b)^2 = 1 ........... (1)
  • Center at (f, 0) : ((x - f)/a)^2 - (y/b)^2 = 1 ........... (2)
  • Polar form center at (f, 0) : R = (D*e)/(1 - e*cos(A)) .. (3)
  • Since (1) and (2) give congruent diagram
  • Hence we can translate center from (1) to (2)
  • From (2) and (3), we see that (2) is the answer
  • Also (1) is the answer
Solution : Use polar coordinate, b^2 = f^2 - a^2 and D*e = b^2/a
  • R = D*e/(1 - e*cos(A))
  • R*(1 - e*cos(A)) = D*e
  • R - e*R*cos(A) = D*e
  • R = D*e + e*x
  • Since D*e = (b^2)/a and e = f/a
  • Hence R = (b^2)/a + f*x/a
  • Or a*R = b^2 + x*f
  • Square both sides
  • (a^2)*(R^2) = (b^2 + x*f)^2
  • (a^2)*(R^2) = b^4 + 2*(b^2)*x*f + (x^2)*(f^2)
  • (a^2)*(x^2 + y^2) - 2*(b^2)*x*f - (x^2)*(f^2) = b^4
  • (a^2)*(x^2) + (a^2)*(y^2) - 2*(b^2)*x*f - (x^2)*(f^2) = b^4 .......... (1)
  • Since b^2 = f^2 - a^2, (1) becomes
  • (a^2 - f^2)*(x^2) + (a^2)*(y^2) - 2*(b^2)*x*f = (b^2)*(a^2 - f^2)
  • -(b^2)*(x^2 - 2*x*f + f^2) + (a^2)*(y^2) = -(b^2)*(a^2) ............. (2)
  • (b^2)*(x - f)^2 - (a^2)*(y^2) = (a^2)*(b^2)
  • Divide both sides by (a^2)*(b^2)
  • ((x - f)/a)^2 - (y/b)^2 = 1

Go to Begin

Q05. Convert(x/4)^2 - (y/3)^2 = 1 to polar form

Method 1 : Find D and e
  • The polar form is R = (D*e)/(1 - e*cos(A))
  • Since f = Sqr(a^2 + b^2) = 5
  • Also D*e = (f - a)*(1 + e) = (f^2 - a^2)/a = (b^2)/a
  • a = 4 and b = 3
  • e = f/a = 5/4 = 1.25
  • D*e = (5 - 4)*(1 + 1.25) = 2.25
  • R = 2.25/(1 - 1.25*cos(A))
Method 2 : Use polar coordinates
  • Since center of R = (D*e)/(1 - e*cos(A)) is at (f, 0)
  • We must use equation ((x - f)/a)^2 - (y/b)^2 = 1
  • Since f = Sqr(a^2 + b^2) = 5
  • Hence 9*(x - 5)^2 - 16*(y^2) = 144
  • 9*(x^2) - 90*x + 9*25 - 16*(y^2) = 144
  • Change coefficient of x^2 same as y^2
    • -16*x^2 + 25*x^2 - 90*x - 16*(y^2) = 144 - 225
    • -16*(x^2 + y^2) = -25*(x^2) + 90*x - 81
  • Since R^2 = x^2 + y^2
  • Hence 16*(R^2) = (5*x - 9)^2
  • Take square root on both sides : 4*R = 5*x - 9
  • R = 1.25*x + 2.25
  • Since x = R*cos(A)
  • Hence R = 1.25*R*cos(A) - 2.25
  • The answer is R = 2.25/(1 + 1.25*cos(A))

Go to Begin

Q06. Convert R = 2.25/(1 + 1.25*cos(A)) to rectangular form

Solution : Use D*e = (f^2 - a^2)/a = (b^2)/a and e = f/a
  • The corresponding form
    • ((x - f)/a)^2 + (y/b)^2 = 1
    • (x/a)^2 + (y/b)^2 = 1
    • R = (D*e)/(1 + e*cos(A))
  • For R = 2.25/(1 + 1.25*cos(A))
    • e = 1.25
    • D*e = 2.25
    • e = f/a and f = 1.25*a ...... (1)
    • D*e = (f^2 - a^2)/a
    • 2.25*a = (f^2 - a^2) ........ (2)
    • Substitute (1) into (2), we have
    • 2.25*a = (1.25*a)^2 - a^2)
    • 2.25*a = 0.5625*a^2
    • a*(0.5625*a - 2.25) = 0
    • Hence a = 0 or a = 2.25/0.5625 = 4
  • Substitute a = 4 into (1), Hence f = 5
  • Since f^2 = a^2 + b^2
  • Hence b^2 = f^2 - a^2 = 25 - 16 = 9
  • Hence b = 3
  • Hence equarion is (x/5)^2 - (y/3)^2 = 1
  • General solution : ((x - h)/a)^2 - ((y - k)/b)^2 = 1
Use polar coordinate
  • R = 2.25/(1 + 1.25*cos(A))
  • R*(1 + 1.25*cos(A)) = 2.25
  • Since R^2 = x^2 + y^2 and x = R*cos(A)
  • Hence R + 1.25*x = 2.25 or R = 2.25 - 1.25*x ......... (1)
  • Square both sides of (1)
  • x^2 + y^2 = 2.25^2 + 2*2.25*1.25*x + 1.5625*x^2
  • Simply 0.5625*x^2 + 5.625*x - y^2 + 5.0625 = 0 ....... (2)
  • Use completing the square, (2) becomes
  • 0.5625*(x^2 + 10*x + 25 - 25) - y^2 = -5.0625
  • 0.5625*(x - 5)^2 - y^2 = -5.0625 + 25*0.5625
  • 0.5625*(x - 5)^2 - y^2 = 9
  • ((x - 4)/4)^2 - (y/3)^2 = 1

Go to Begin

Q07. Reference

Reference

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

1