Mathematics Dictionary
Dr. K. G. Shih
Figure 317 : Hyperbola R = (D*e)/(1 - e*cos(A))
Q01 |
- Diagram : R = (D*e)/(1 - e*cos(A))
Q02 |
- Directrix
Q03 |
- Convert (x/a)^2 - (y/b)^2 = 1 to polar form
Q04 |
- Convert R = (D*e)/(1 - e*cos(A)) to rectangular form
Q05 |
- Convert (x/4)^2 - (y/3)^2 = 1 to polar form
Q06 |
- Convert R = 2.25/(1 + 1.25*cos(A)) to rectangular form
Q07 |
- Reference
Q01. Diagram :
Go to Begin
Q02. Directrix
Defintion
R = point P(x, y) to focus (0, 0)
D = distance from focus to directrix
D + x = distance from P to directrix
R/(R + x) = e is hperbola if e > 1
Where e = f/a
Since x = R*cos(A)
Hence R = (D*e)/(1 - e*cos(A))
Find D
From diagram we see that FU = f - a
When A = 180, R = FU = (D*e)/(1 + e)
Hence D*e = (f - a)*(1 + e)
Since e = f/a
Hence D*e = (f - a)*(1 + f/a)
Hence D*e = (f^2 - a^2)/a
Hence D*e = (b^2)/a
Go to Begin
Q03. Convert (x/a)^2 - (y/b)^2 = 1 to polar form
Method 1 : Find D and e
Corresponding form
R = (D*e)/(1 - e*cos(A)) : The center at (f, 0)
((x - f)/a)^2 + (y/b)^2 = 1 : The center at (f, 0)
(x/a)^2 + (y/b)^2 = 1 : The center at (0, 0)
Since the translation from (0, 0) to (f, 0), the diagram is no change
Hence we know that the polar form is R = (D*e)/(1 - e*cos(A))
Method 2 : Use polar coordinates
R = D*e/(1 - e*cos(A))
The focal point is at F(0, 0)
The center is at (f, 0)
Hence rectangular form is ((x - f)/a)^2 - (y/b)^2 = 1
Remove denominator and simplify
(b^2)*(x + f)^2 + (a^2)*(y^2) = (a^2)*b*2.
(b^2)*(x^2) + (b^2)*x*f + (b^2)*(f^2) + (a^2)*(y^2) = (a^2)*(b^2)
Since b^2 = f^2 - a^2.
Hence (b^2)*(x^2) + (a^2)*(y^2) + 2*(b^2)*x*f = (a^2)*(b^2) - (b^2)*(f^2)
-(a^2 - f^2)*(x^2) + (a^2)*(y^2) + 2*(b^2)*x*f = -(b^2)*(a^2 - f^2)
Polar coordiantes
x = R*cos(A)
y = R*sin(A)
R^2 = x^2 + y^2
Substitute polar coordinates into above equation
(x^2 + y^2)*(a^2) - (f^2)*(x^2) + 2*(b^2)*x*f = b^4
(R^2)*(a^2) - (f^2)*(x^2) + 2*(b^2)*x*f - b^4 = 0
(R^2)*(a^2) - ((f^2)*(x^2) - 2*(b^2)*x*f + b^4) = 0
(R^2)*(a^2) - (f*x - b^2)^2 = 0
R*a = f*x - b^2
Since x = R*cos(A)
Hence R*a - R*f*cos(A) = b^2
R*(a - f*cos(A)) = b^2
R*(1 - f*cos(A)/a) = (b^2)/a
Since e = f/a and D*e = (b^2)/a
Hence R = (D*e)/(1 - e*cos(A))
Go to Begin
Q04. Convert R = (D*e)/(1 - e*cos(A)) to rectangular form
Solution : Use D
The corresponding form
Rectangular form : ((x - f)/a)^2 - (y/b)^2 = 1
Polar form : R = (D*e)/(1 - e*cos(A))
Since center at (0, 0) : (x/a)^2 - (y/b)^2 = 1 ........... (1)
Center at (f, 0) : ((x - f)/a)^2 - (y/b)^2 = 1 ........... (2)
Polar form center at (f, 0) : R = (D*e)/(1 - e*cos(A)) .. (3)
Since (1) and (2) give congruent diagram
Hence we can translate center from (1) to (2)
From (2) and (3), we see that (2) is the answer
Also (1) is the answer
Solution : Use polar coordinate, b^2 = f^2 - a^2 and D*e = b^2/a
R = D*e/(1 - e*cos(A))
R*(1 - e*cos(A)) = D*e
R - e*R*cos(A) = D*e
R = D*e + e*x
Since D*e = (b^2)/a and e = f/a
Hence R = (b^2)/a + f*x/a
Or a*R = b^2 + x*f
Square both sides
(a^2)*(R^2) = (b^2 + x*f)^2
(a^2)*(R^2) = b^4 + 2*(b^2)*x*f + (x^2)*(f^2)
(a^2)*(x^2 + y^2) - 2*(b^2)*x*f - (x^2)*(f^2) = b^4
(a^2)*(x^2) + (a^2)*(y^2) - 2*(b^2)*x*f - (x^2)*(f^2) = b^4 .......... (1)
Since b^2 = f^2 - a^2, (1) becomes
(a^2 - f^2)*(x^2) + (a^2)*(y^2) - 2*(b^2)*x*f = (b^2)*(a^2 - f^2)
-(b^2)*(x^2 - 2*x*f + f^2) + (a^2)*(y^2) = -(b^2)*(a^2) ............. (2)
(b^2)*(x - f)^2 - (a^2)*(y^2) = (a^2)*(b^2)
Divide both sides by (a^2)*(b^2)
((x - f)/a)^2 - (y/b)^2 = 1
Go to Begin
Q05. Convert(x/4)^2 - (y/3)^2 = 1 to polar form
Method 1 : Find D and e
The polar form is R = (D*e)/(1 - e*cos(A))
Since f = Sqr(a^2 + b^2) = 5
Also D*e = (f - a)*(1 + e) = (f^2 - a^2)/a = (b^2)/a
a = 4 and b = 3
e = f/a = 5/4 = 1.25
D*e = (5 - 4)*(1 + 1.25) = 2.25
R = 2.25/(1 - 1.25*cos(A))
Method 2 : Use polar coordinates
Since center of R = (D*e)/(1 - e*cos(A)) is at (f, 0)
We must use equation ((x - f)/a)^2 - (y/b)^2 = 1
Since f = Sqr(a^2 + b^2) = 5
Hence 9*(x - 5)^2 - 16*(y^2) = 144
9*(x^2) - 90*x + 9*25 - 16*(y^2) = 144
Change coefficient of x^2 same as y^2
-16*x^2 + 25*x^2 - 90*x - 16*(y^2) = 144 - 225
-16*(x^2 + y^2) = -25*(x^2) + 90*x - 81
Since R^2 = x^2 + y^2
Hence 16*(R^2) = (5*x - 9)^2
Take square root on both sides : 4*R = 5*x - 9
R = 1.25*x + 2.25
Since x = R*cos(A)
Hence R = 1.25*R*cos(A) - 2.25
The answer is R = 2.25/(1 + 1.25*cos(A))
Go to Begin
Q06. Convert R = 2.25/(1 + 1.25*cos(A)) to rectangular form
Solution : Use D*e = (f^2 - a^2)/a = (b^2)/a and e = f/a
The corresponding form
((x - f)/a)^2 + (y/b)^2 = 1
(x/a)^2 + (y/b)^2 = 1
R = (D*e)/(1 + e*cos(A))
For R = 2.25/(1 + 1.25*cos(A))
e = 1.25
D*e = 2.25
e = f/a and f = 1.25*a ...... (1)
D*e = (f^2 - a^2)/a
2.25*a = (f^2 - a^2) ........ (2)
Substitute (1) into (2), we have
2.25*a = (1.25*a)^2 - a^2)
2.25*a = 0.5625*a^2
a*(0.5625*a - 2.25) = 0
Hence a = 0 or a = 2.25/0.5625 = 4
Substitute a = 4 into (1), Hence f = 5
Since f^2 = a^2 + b^2
Hence b^2 = f^2 - a^2 = 25 - 16 = 9
Hence b = 3
Hence equarion is (x/5)^2 - (y/3)^2 = 1
General solution : ((x - h)/a)^2 - ((y - k)/b)^2 = 1
Use polar coordinate
R = 2.25/(1 + 1.25*cos(A))
R*(1 + 1.25*cos(A)) = 2.25
Since R^2 = x^2 + y^2 and x = R*cos(A)
Hence R + 1.25*x = 2.25 or R = 2.25 - 1.25*x ......... (1)
Square both sides of (1)
x^2 + y^2 = 2.25^2 + 2*2.25*1.25*x + 1.5625*x^2
Simply 0.5625*x^2 + 5.625*x - y^2 + 5.0625 = 0 ....... (2)
Use completing the square, (2) becomes
0.5625*(x^2 + 10*x + 25 - 25) - y^2 = -5.0625
0.5625*(x - 5)^2 - y^2 = -5.0625 + 25*0.5625
0.5625*(x - 5)^2 - y^2 = 9
((x - 4)/4)^2 - (y/3)^2 = 1
Go to Begin
Q07. Reference
Reference
Subject |
Hyperbola
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.