Mathematics Dictionary
Dr. K. G. Shih
Figure 320 : Solve x^5 - 1 = 0
Q01 |
- Diagram to Solve x^5 - 1 = 0
Q02 |
- DeMovire's theory
Q03 |
- Solve x^5 - 1 = 0 by DeMovire's theory
Q04 |
- Solve x^5 - 1 = 0 by construction
Q05 |
- Solve x^4 + x^3 + x^2 + x + 1 = 0
Q06 |
- Reference
Q01. Diagram : Solve x^5 - 1 = 0
Go to Begin
Q02. DeMovire's thoery
Rule 1
(cos(A) + i*sin(A))^n = cos(n*A) + i*sin(n*A)
Rule 2
(cos(A) + i*sin(A))^(1/n) = cos((2*k*pi + A)/n) + i*sin((2*k*pi + A)/n)
Where k = 0, 1, 2, .... (n - 1)
Go to Begin
Q03. Solve x^5 - 1 = 0 by DeMovire's theory
Change x^5 = 1 to polar form
x^5 = cos(0) + i*sin(0)
Find x
x = (cos(0) + i*sin(0))^(1/5)
x = cos((2*k*pi + 0)/5) + i*sin((2*k*pi + 0)/5)
k = 0, x0 = cos(000) + i*sin(000) = 1
k = 1, x1 = cos(072) + i*sin(072)
k = 2, x2 = cos(144) + i*sin(144)
k = 3, x3 = cos(216) + i*sin(216)
k = 4, x4 = cos(288) + i*sin(288)
Conjugate solution
x0 and x4 are conjugate
Sum of roots is real
x1 + x4 = cos(72) + i*sin(72) + cos(288) + i*sin(288)
= cos(72) + i*sin(72) + cos(360 - 72) + i*sin(360 - 72)
= cos(72) + i*sin(72) + cos(72) - i*sin(72)
= 2*cos(72)
= Real number
Product of root is real
x1*x4 = (cos(72) + i*sin(72))*(cos(288) + i*sin(288))
= (cos(72) + i*sin(72))*(cos(360 - 72) + i*sin(360 - 72))
= (cos(72) + i*sin(72))*(cos(72) - i*sin(72))
= cos(72)^2 - (i^2)*sin(72)^2
= 1
= real number
x2 and x3 are conjugate
Sum of roots is real
x2 + x3 = cos(144) + i*sin(144) + cos(216) + i*sin(216)
= cos(180 - 36) + i*sin(180 - 36) + cos(180 + 36) + i*sin(180 + 36)
= -cos(36) + i*sin(36) - cos(36) - i*sin(36)
= -2*cos(36)
= Real number
Product of root is real
x2*x3 = (cos(144) + i*sin(144))*(cos(216) + i*sin(216))
= (-cos(36) + i*sin(36))*(-cos(36) - i*sin(36))
= cos(36)^2 - (i^2)*sin(36)^2
= cos(36)^2 + sin(36)^2
= 1
= Real number
x2*x3 = (cos(144) + i*sin(144))*(cos(216) + i*sin(216))
= (-cos(36) + i*sin(36))*(-cos(36) - i*sin(36))
= cos(36)^2 - (i^2)*sin(36)^2
= cos(36)^2 + sin(36)^2
= 1
= Real number
Formula
sin(180 - A) = +sin(A)
sin(180 + A) = -sin(A)
sin(360 - A) = -sin(A)
cos(180 - A) = -cos(A)
cos(180 + A) = -cos(A)
cos(360 - A) = +cos(A)
Go to Begin
Q04. Solve x^5 - 1 = 0 by construction
Construction
Draw a large unit circle (Radius = 1 unit)
Draw five points P, Q, R, S, T on circle
Draw angle A0 = angle POX = 000
Draw angle A1 = angle QOX = 072
Draw angle A2 = angle ROX = 144
Draw angle A3 = angle SOX = 216
Draw angle A4 = angle TOX = 288
Find solution by measurments
Find root r1
Let coordinates Q be (x1, y1)
Measure x0 and y0 then r1 = x1 + i*y1
Find root r2
Let coordinates R be (x2, y2)
Measure x0 and y0 then r2 = x2 + i*y2
r3 is conjugate of r2
r4 is conjugate of r1
Go to Begin
Q05. Solve x^4 + x^3 + x^2 + x + 1 = 0
Use solution of x^5 - 1 = 0
Since x^5 - 1 = (x - 1)*(x^4 + x^3 + x^2 + x + 1)
The roots are r1, r2, r3, r4
r1 = cos(072) + i*sin(072)
r2 = cos(144) + i*sin(144)
r3 = cos(216) + i*sin(216)
r4 = cos(288) + i*sin(288)
Go to Begin
Q06. Reference
Subject |
DeMovire's theory
Subject |
Solve x^5 + 1 = 0
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.