Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 320 : Solve x^5 - 1 = 0

  • Q01 | - Diagram to Solve x^5 - 1 = 0
  • Q02 | - DeMovire's theory
  • Q03 | - Solve x^5 - 1 = 0 by DeMovire's theory
  • Q04 | - Solve x^5 - 1 = 0 by construction
  • Q05 | - Solve x^4 + x^3 + x^2 + x + 1 = 0
  • Q06 | - Reference


Q01. Diagram : Solve x^5 - 1 = 0


Go to Begin

Q02. DeMovire's thoery

Rule 1
  • (cos(A) + i*sin(A))^n = cos(n*A) + i*sin(n*A)
Rule 2
  • (cos(A) + i*sin(A))^(1/n) = cos((2*k*pi + A)/n) + i*sin((2*k*pi + A)/n)
  • Where k = 0, 1, 2, .... (n - 1)

Go to Begin

Q03. Solve x^5 - 1 = 0 by DeMovire's theory

Change x^5 = 1 to polar form
  • x^5 = cos(0) + i*sin(0)
Find x
  • x = (cos(0) + i*sin(0))^(1/5)
  • x = cos((2*k*pi + 0)/5) + i*sin((2*k*pi + 0)/5)
  • k = 0, x0 = cos(000) + i*sin(000) = 1
  • k = 1, x1 = cos(072) + i*sin(072)
  • k = 2, x2 = cos(144) + i*sin(144)
  • k = 3, x3 = cos(216) + i*sin(216)
  • k = 4, x4 = cos(288) + i*sin(288)
Conjugate solution
  • x0 and x4 are conjugate
    • Sum of roots is real
    • x1 + x4 = cos(72) + i*sin(72) + cos(288) + i*sin(288)
    • = cos(72) + i*sin(72) + cos(360 - 72) + i*sin(360 - 72)
    • = cos(72) + i*sin(72) + cos(72) - i*sin(72)
    • = 2*cos(72)
    • = Real number
    • Product of root is real
    • x1*x4 = (cos(72) + i*sin(72))*(cos(288) + i*sin(288))
    • = (cos(72) + i*sin(72))*(cos(360 - 72) + i*sin(360 - 72))
    • = (cos(72) + i*sin(72))*(cos(72) - i*sin(72))
    • = cos(72)^2 - (i^2)*sin(72)^2
    • = 1
    • = real number
  • x2 and x3 are conjugate
  • Sum of roots is real
  • x2 + x3 = cos(144) + i*sin(144) + cos(216) + i*sin(216)
  • = cos(180 - 36) + i*sin(180 - 36) + cos(180 + 36) + i*sin(180 + 36)
  • = -cos(36) + i*sin(36) - cos(36) - i*sin(36)
  • = -2*cos(36)
  • = Real number
  • Product of root is real
  • x2*x3 = (cos(144) + i*sin(144))*(cos(216) + i*sin(216))
  • = (-cos(36) + i*sin(36))*(-cos(36) - i*sin(36))
  • = cos(36)^2 - (i^2)*sin(36)^2
  • = cos(36)^2 + sin(36)^2
  • = 1
  • = Real number
  • x2*x3 = (cos(144) + i*sin(144))*(cos(216) + i*sin(216))
  • = (-cos(36) + i*sin(36))*(-cos(36) - i*sin(36))
  • = cos(36)^2 - (i^2)*sin(36)^2
  • = cos(36)^2 + sin(36)^2
  • = 1
  • = Real number
Formula
  • sin(180 - A) = +sin(A)
  • sin(180 + A) = -sin(A)
  • sin(360 - A) = -sin(A)
  • cos(180 - A) = -cos(A)
  • cos(180 + A) = -cos(A)
  • cos(360 - A) = +cos(A)

Go to Begin

Q04. Solve x^5 - 1 = 0 by construction

Construction
  • Draw a large unit circle (Radius = 1 unit)
  • Draw five points P, Q, R, S, T on circle
  • Draw angle A0 = angle POX = 000
  • Draw angle A1 = angle QOX = 072
  • Draw angle A2 = angle ROX = 144
  • Draw angle A3 = angle SOX = 216
  • Draw angle A4 = angle TOX = 288
Find solution by measurments
  • Find root r1
    • Let coordinates Q be (x1, y1)
    • Measure x0 and y0 then r1 = x1 + i*y1
  • Find root r2
    • Let coordinates R be (x2, y2)
    • Measure x0 and y0 then r2 = x2 + i*y2
  • r3 is conjugate of r2
  • r4 is conjugate of r1

Go to Begin

Q05. Solve x^4 + x^3 + x^2 + x + 1 = 0

Use solution of x^5 - 1 = 0
  • Since x^5 - 1 = (x - 1)*(x^4 + x^3 + x^2 + x + 1)
  • The roots are r1, r2, r3, r4
  • r1 = cos(072) + i*sin(072)
  • r2 = cos(144) + i*sin(144)
  • r3 = cos(216) + i*sin(216)
  • r4 = cos(288) + i*sin(288)

Go to Begin

Q06. Reference


Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 319
Question : Solve x^5 + 1 = 0 by construction
  • 1. Find root 1 at Angle = 000 : R1 = 1
  • 2. Find root 2 at Angle = 072 degrees : R2 = x2 + i*y2
  • 3. Find root 3 at Angle = 144 degrees : R3 = x3 + i*y3
  • 4. Find root 4 at Angle = 216 degrees : R4 = x4 + i*y4
  • 5. Find root 5 at Angle = 288 degrees : R5 = x5 + i*y5
Reference

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1