Mathematics Dictionary
Dr. K. G. Shih

    Figure 321 : Angle 30 and 45 degrees


  • Q01 | - Diagram : Angle 30 and 45 degrees
  • Q02 | - Angle 30 degrees
  • Q03 | - Angle 45 degrees
  • Q04 | - Angle 60 degrees
  • Q05 | - Prove opposite side of angle 30 is half of hypothese


    Q01. Diagram : Angle 30 and angle 45



    Go to Begin

    Q02. Special value for angle is 30 degrees

    Let angle A = 30 and angle C = 90
    • Geometric theory
      • The opposite side of angle A is 1,
      • The Hypothese is 2 (Geometric theory).
      • Hence Adjacent of angle A is Sqr(2^2 - 1) = Sqr(3)
    • The values of the ratios are
      • sin(30) = Opp/Hyp = 1/2.
      • cos(30) = Adj/Hyp = Sqr(3)/2.
      • Tan(30) = Opp/Adj = 1/Sqr(3) = Sqr(3)/3.
      • csc(30) = Hyp/Opp = 2.
      • sec(30) = Hyp/Adj = 2/Sqr(3) = 2*Sqr(3)/3.
      • cot(30) = Adj/Opp = Sqr(3).

    Go to Begin

    Q03. Special value for angle is 45 degrees

    Let angle A = 45 and angle C = 90
    • Geometric theory
      • The opposite side of angle A is 1
      • The adjacent side is also 1.
      • Hence hypothese Sqr(1^2 + 1^2) = Sqr(2)
    • The values of the ratios are
      • sin(45) = Opp/Hyp = Sqr(2)/2.
      • cos(45) = Adj/Hyp = Sqr(2)/2.
      • Tan(45) = Opp/Adj = 1.
      • csc(45) = Hyp/Opp = 2/Sqr(2) = Sqr(2).
      • sec(45) = Hyp/Adj = 2/Sqr(2) = Sqr(2).
      • cot(45) = Adj/Opp = 1.

    Go to Begin

    Q04. Special value for angle is 60 degrees

    Let angle A = 60 and angle C = 90
    • Geometric theory
      • If hypothese is 2, then adjacent side of A is 1.
      • Hence Oppsite side of angle A is Sqr(2^2 - 1) = Sqr(3)
    • The values of the ratios are
      • sin(60) = Opp/Hyp = Sqr(3)/2.
      • cos(60) = Adj/Hyp = 1/2.
      • Tan(60) = Opp/Adj = 1/Sqr(3) = Sqr(3)/3.
      • csc(60) = Hyp/Opp = 2/Sqr(3) = 2*Sqr(3)/3..
      • sec(60) = Hyp/Adj = 2.
      • cot(60) = Adj/Opp = 1/Sqr(3) = Sqr(3)/3.

    Go to Begin

    Q05. Prove opposite side of angle 30 is half of hypothese

    Construction
    • Let mid point of AC is E
    • Let mid point of AB is F
    Solution
    • Let angle BAC = 30 degrees
    • EF parallel to BC (Mid point theory)
    • Hence EF bisects AC
    • Hence AF = FC
    • Hence angle ECF = 30 dgrees
    • Hence angle BCF = angle CFB = FBC
    • Hence BC = BF = AB/2

    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

    1