Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 328 : Parametric Equation

  • Q01 | - Diagram : Graph of x = t^3 - 3*t and y = t^2 + 1
  • Q02 | - Sketch the curve
  • Q03 | - Find intersection of the curve
  • Q04 | - Find the angle at intersection


Q01. Diagram : Curve of x = t^3 - 3*t and y = t^2 + 1


Go to Begin

Q02. Sketch the curve

Data points of x = t^3 - 3*t and y = t^2 + 1
  • t .... 0 .... 1 ... Sqr(3) .... 2 ....
  • x .... 0 ... -2 ........ 0 .... 2 ....
  • y .... 1 .... 2 ........ 4 .... 5 ....
Data points
  • t .... 0 ... -1 ... -Sqr(3) .... -2 ....
  • x .... 0 ... +2 ........ 0 ..... -2 ....
  • y .... 1 .... 2 ........ 4 ...... 5 ....
Description
  • 1. The curve is symmetrical to y-axis
  • 2. The curve is intecepted at (0, 4)

Go to Begin

Q03. Find intersection of the curve

Answer
  • From Q02, we know the intersection is at (0, 4)
  • We can also see the intersection from the diagram

Go to Begin

Q04. Find angle at intersection of the curve

Find the first derivative of x = t^3 - 3*t and y = t^2 + 1
  • dy/dx = (dy/dt)/(dx/dt)
  • dy/dx = (3*t^2 - 3)/(2*t)
  • Slope at point (0, 4) when t = Sqr(3)
    • The value of t is Sqr(3)
    • Hence slope is (3*3 - 3)/(2*Sqr(3)) = 6/3.4641 = 1.7320516
    • Slope = tan(A1)
    • Hence A1 = arctan(1.7320516) = 60 degrees
  • Slope at point (0, 4) when t = -Sqr(3)
    • The value of t is -Sqr(3)
    • Hence slope is (3*3 - 3)/(-2*Sqr(3)) = -6/3.4641 = -1.7320516
    • Slope = tan(A1)
    • Hence A1 = arctan(-1.7320516) = 120 degrees
  • Hence angle at intersection is (120 - 60) = 60

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

1