Mathematics Dictionary
Dr. K. G. Shih
Figure 328 : Parametric Equation
Q01 |
- Diagram : Graph of x = t^3 - 3*t and y = t^2 + 1
Q02 |
- Sketch the curve
Q03 |
- Find intersection of the curve
Q04 |
- Find the angle at intersection
Q01. Diagram : Curve of x = t^3 - 3*t and y = t^2 + 1
Go to Begin
Q02. Sketch the curve
Data points of x = t^3 - 3*t and y = t^2 + 1
t .... 0 .... 1 ... Sqr(3) .... 2 ....
x .... 0 ... -2 ........ 0 .... 2 ....
y .... 1 .... 2 ........ 4 .... 5 ....
Data points
t .... 0 ... -1 ... -Sqr(3) .... -2 ....
x .... 0 ... +2 ........ 0 ..... -2 ....
y .... 1 .... 2 ........ 4 ...... 5 ....
Description
1. The curve is symmetrical to y-axis
2. The curve is intecepted at (0, 4)
Go to Begin
Q03. Find intersection of the curve
Answer
From Q02, we know the intersection is at (0, 4)
We can also see the intersection from the diagram
Go to Begin
Q04. Find angle at intersection of the curve
Find the first derivative of x = t^3 - 3*t and y = t^2 + 1
dy/dx = (dy/dt)/(dx/dt)
dy/dx = (3*t^2 - 3)/(2*t)
Slope at point (0, 4) when t = Sqr(3)
The value of t is Sqr(3)
Hence slope is (3*3 - 3)/(2*Sqr(3)) = 6/3.4641 = 1.7320516
Slope = tan(A1)
Hence A1 = arctan(1.7320516) = 60 degrees
Slope at point (0, 4) when t = -Sqr(3)
The value of t is -Sqr(3)
Hence slope is (3*3 - 3)/(-2*Sqr(3)) = -6/3.4641 = -1.7320516
Slope = tan(A1)
Hence A1 = arctan(-1.7320516) = 120 degrees
Hence angle at intersection is (120 - 60) = 60
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.