Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 332 : Conic Sections (1) F(x, y) = 0

  • Q01 | - Diagram of x^2 + y^2 + 4*x - 4*y - 9 = 0
  • Q02 | - Locus of x^2 + y^2 + 4*x - 4*y - 17 = 0
  • Q03 | - Locus of x^2 + y^2 + 4*x - 4*y + 8 = 0
  • Q04 | - Locus of x^2 + y^2 + 4*x - 4*y + 10 = 0
  • Q05 | - Locus of A*x^2 + C*y^2 + D*x + E*y + F = 0
  • Q06 | - Equations of circle
  • Q07 | - Sketch circle of F(x, y) = 0


Q01. Diagram : x^2 + y^2 + 4*x - 4*y - 9 = 0




Go to Begin

Q02. Locus of x^2 + y^2 + 4*x - 4*y - 17 = 0

Change to standard form using completing the square
  • (x^2 + 4*x + 4 - 4) + (y^2 - 4*y + 4 - 4) - 17 = 0
  • (x + 2)^2 + (y - 2)^2 - 4 - 4 - 17 = 0
  • (x + 2)^2 + (y - 2)^2 = (5)^2
Interpretation
  • It is a circle
  • The center is at (-2, 2)
  • Radius is equal 5

Go to Begin

Q03. Locus of x^2 + y^2 + 4*x - 4*y + 8 = 0

Change to standard form using completing the square
  • (x^2 + 4*x + 4 - 4) + (y^2 - 4*y + 4 - 4) + 8 = 0
  • (x + 2)^2 + (y - 2)^2 - 4 - 4 + 8 = 0
  • (x + 2)^2 + (y - 2)^2 = 0
Interpretation
  • It is a point at (-2, 2)
  • Radius is equal 0

Go to Begin

Q04. Locus of x^2 + y^2 + 4*x - 4*y + 10 = 0

Change to standard form using completing the square
  • (x^2 + 4*x + 4 - 4) + (y^2 - 4*y + 4 - 4) + 10 = 0
  • (x + 2)^2 + (y - 2)^2 - 4 - 4 + 10 = 0
  • (x + 2)^2 + (y - 2)^2 = -2
Interpretation
  • It is not existed in real number system
  • There is no locus

Go to Begin

Q05. Locus of A*x^2 + C*y^2 + D*x + E*y + F = 0

The locus
  • It is a circle if A = C
  • It is an ellipse if A and C have same sign
  • It is a hyprbola if A and C have different sign
Further investigtion : Change equation into standard form
  • Standard form A*(x - h)^2 + C*(y - k)^2 = p
  • The locus when A = C
    • it is a circle if p > 0
    • it is a point if p = 0
    • it is not exited in real number system if p < 0
  • The locus when A and C have same signs
    • it is an ellipse if p > 0
    • it is a point if p = 0
    • it is not exited in real number system if p < 0
  • The locus when A and C have different signs
    • it is a hyperbola with principal axis y = k if p > 0
    • it gives two lines if p = 0
    • it is a hyperbola with different principal axis x = h if p < 0

Go to Begin

Q06. Equations of Circle

1. Standard form in rectangular coordinates
  • Equation : (x - h)^2 + (y - k)^2 = r^2
  • Center at (h, k)
  • Radius = r
2. Implicit form in rectnagular form
  • Equation F(x, y) = x^2 + y^2 + D*x + E*y + F = 0
  • We have to change it into standard form for interpretation
3. Parametric equation form
  • Equation : x = h + r*cos(A) and y = k + r*sin(A)
  • Use Pythagorean realtion we can change this equation to standard form
  • Center at (h, k)
  • Radius is r
4. Special form
  • R = sin(A)
    • Since R = Sqr(x^2 + y^2) and y = R*sin(A)
    • Hence R = y/R
    • Hence R^2 = y
    • Hence x^2 + y^2 = y
    • Hence x^2 + (y - 1/2)^2 = (1/2)^2
    • Hence center at (0, 1/2)
    • Hence radius = 1/2
  • R = cos(A)
    • Since R = Sqr(x^2 + y^2) and x = R*cos(A)
    • Hence R = x/R
    • Hence R^2 = x
    • Hence x^2 + y^2 = x
    • Hence (x - 1/2)^2 + y^2 = (1/2)^2
    • Hence center at (1/2, 0)
    • Hence radius = 1/2

Go to Begin

Q07. Sketch circle of F(x, y) = 0

Sketch diagram of x^2 + y^2 + 4*x - 4*y - 9 = 0
  • Star the QB version program
  • Give input on keyboard
    • Type option 9 and press return
    • Type 2 and press return
    • Type 1, 1, 4, -4, -9 and press return
  • Use the diagram
    • 1. Find center
    • 2. Find redius

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 319
Question : Solve x^5 + 1 = 0 by construction
  • 1. Find root 1 at Angle = 000 : R1 = 1
  • 2. Find root 2 at Angle = 072 degrees : R2 = x2 + i*y2
  • 3. Find root 3 at Angle = 144 degrees : R3 = x3 + i*y3
  • 4. Find root 4 at Angle = 216 degrees : R4 = x4 + i*y4
  • 5. Find root 5 at Angle = 288 degrees : R5 = x5 + i*y5
Reference

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1