Mathematics Dictionary
Dr. K. G. Shih
Figure 333 : Ellipse of F(x, y) = 0
Q01 |
- Diagram of 2*x^2 + 4*y^2 + 4*x - 4*y - 9 = 0
Q02 |
- Locus of 2*x^2 + 4*y^2 + 4*x - 8*y - 10 = 0
Q03 |
- Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 6 = 0
Q04 |
- Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 12 = 0
Q05 |
- Locus of A*x^2 + C*y^2 + D*x + E*y + F = 0
Q06 |
- Equations of ellipse
Q07 |
- Sketch ellipse of F(x, y)
Q01. Diagram : 2*x^2 + 4*y^2 + 4*x - 4*y - 9 = 0
Go to Begin
Q02. Locus of 2*x^2 + 4*y^2 + 4*x - 8*y - 10 = 0
Change to standard form using completing the square
2*(x^2 + 2*x + 1 - 1) + 4*(y^2 - 2*y + 1 - 1) - 10 = 0
2*(x + 1)^2 + 4*(y - 1)^2 - 2 - 4 - 10 = 0
2*(x + 1)^2 + 4*(y - 1)^2 = 16
((x + 1)/a)^2 + ((y - 1)/b)^2 = 1
Hence a = Sqr(8) and b = Sqr(4)
Focal length = f = Sqr(a^2 - b^2) = Sqr(8 - 4) = 2
Interpretation
It is an ellipse
The center is at (-1, 1)
Semi-axese a = Sqr(8) and b = Sqr(4)
Focal length = f = Sqr(a^2 - b^2) = Sqr(4) = 2
Go to Begin
Q03. Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 8 = 0
Change to standard form using completing the square
2*(x^2 + 2*x + 1 - 1) + 4*(y^2 - 2*y + 1 - 1) + 6 = 0
2*(x + 1)^2 + 4*(y - 1)^2 - 2 - 4 + 6 = 0
2*(x + 1)^2 + 4*(y - 1)^2 = 0
Interpretation
It is a point at (-1, 1)
Go to Begin
Q04. Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 12 = 0
Change to standard form using completing the square
2*(x^2 + 2*x + 1 - 1) + 4*(y^2 - 2*y + 1 - 1) + 12 = 0
2*(x + 1)^2 + 4*(y - 1)^2 - 2 - 4 + 12 = 0
2*(x + 1)^2 + 4*(y - 1)^2 = -6
Interpretation
The equation is illegal in the real number system
Hence there is no locus
Go to Begin
Q05. Locus of A*(x^2) + C*(y^2) + D*x + E*y + F = 0
The locus
It is a circle if A = C
It is an ellipse if A and C have same sign
It is a hyprbola if A and C have different sign
Further investigtion : Change equation into standard form
Standard form A*(x - h)^2 + C*(y - k)^2 = p
The locus when A = C
it is a circle if p > 0
it is a point if p = 0
it is not exited in real number system if p < 0
The locus when A and C have same signs
it is an ellipse if p > 0
it is a point if p = 0
it is not exited in real number system if p < 0
The locus when A and C have different signs
it is a hyperbola with principal axis y = k if p > 0
it gives two lines if p = 0
it is a hyperbola with different principal axis x = h if p < 0
Go to Begin
Q06. Equations of ellipse
1. Standard form in rectangular form
Equation : ((x - h)/a)^2 + ((y - k)/b)^2 = 1
Center at (h, k)
Principal axis is x = h if a > b
Principal axis is y = k if b > a
Focal length = f = Sqr(a^2 - b^2)
Directrix : D*e = (b^2)/a
2. Implicit form
Equation : F(x, y) = A*x^2 + C*y^2 + D*x + E*y + F = 0
A and C must be same signs
Change to standard form for interpretation
3. Parametric form
Equation : x = h + a*cos(A) and y = k + b*sin(A)
Use Pythagorean relation to change it into standard form for interpretation
Center at (h, k)
Sem-axese are a and b
Focal length = f = Sqr(a^2 - b^2)
4. Polar form with e < 0
R = (D*e)/(1 - e*sin(A))
R = (D*e)/(1 + e*sin(A))
R = (D*e)/(1 - e*cos(A))
R = (D*e)/(1 + e*cos(A))
Go to Begin
Q07. Sketch ellipse of F(x, y)
Sketch diagram of 2*x^2 + 4*y^2 + 4*x - 4*y - 9 = 0
Star the QB version program
Program |
ZM34 : Option 10
Give input on keyboard
Type option 10 and press return
Type 2 and press return
Type 2, 4, 4, -4, -9 and press return
Use the diagram
1. Find center
2. Find semi-axese
3. Find focal length
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.