Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 333 : Ellipse of F(x, y) = 0

  • Q01 | - Diagram of 2*x^2 + 4*y^2 + 4*x - 4*y - 9 = 0
  • Q02 | - Locus of 2*x^2 + 4*y^2 + 4*x - 8*y - 10 = 0
  • Q03 | - Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 6 = 0
  • Q04 | - Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 12 = 0
  • Q05 | - Locus of A*x^2 + C*y^2 + D*x + E*y + F = 0
  • Q06 | - Equations of ellipse
  • Q07 | - Sketch ellipse of F(x, y)


Q01. Diagram : 2*x^2 + 4*y^2 + 4*x - 4*y - 9 = 0




Go to Begin

Q02. Locus of 2*x^2 + 4*y^2 + 4*x - 8*y - 10 = 0

Change to standard form using completing the square
  • 2*(x^2 + 2*x + 1 - 1) + 4*(y^2 - 2*y + 1 - 1) - 10 = 0
  • 2*(x + 1)^2 + 4*(y - 1)^2 - 2 - 4 - 10 = 0
  • 2*(x + 1)^2 + 4*(y - 1)^2 = 16
  • ((x + 1)/a)^2 + ((y - 1)/b)^2 = 1
  • Hence a = Sqr(8) and b = Sqr(4)
  • Focal length = f = Sqr(a^2 - b^2) = Sqr(8 - 4) = 2
Interpretation
  • It is an ellipse
  • The center is at (-1, 1)
  • Semi-axese a = Sqr(8) and b = Sqr(4)
  • Focal length = f = Sqr(a^2 - b^2) = Sqr(4) = 2

Go to Begin

Q03. Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 8 = 0

Change to standard form using completing the square
  • 2*(x^2 + 2*x + 1 - 1) + 4*(y^2 - 2*y + 1 - 1) + 6 = 0
  • 2*(x + 1)^2 + 4*(y - 1)^2 - 2 - 4 + 6 = 0
  • 2*(x + 1)^2 + 4*(y - 1)^2 = 0
Interpretation
  • It is a point at (-1, 1)

Go to Begin

Q04. Locus of 2*x^2 + 4*y^2 + 4*x - 8*y + 12 = 0

Change to standard form using completing the square
  • 2*(x^2 + 2*x + 1 - 1) + 4*(y^2 - 2*y + 1 - 1) + 12 = 0
  • 2*(x + 1)^2 + 4*(y - 1)^2 - 2 - 4 + 12 = 0
  • 2*(x + 1)^2 + 4*(y - 1)^2 = -6
Interpretation
  • The equation is illegal in the real number system
  • Hence there is no locus

Go to Begin

Q05. Locus of A*(x^2) + C*(y^2) + D*x + E*y + F = 0

The locus
  • It is a circle if A = C
  • It is an ellipse if A and C have same sign
  • It is a hyprbola if A and C have different sign
Further investigtion : Change equation into standard form
  • Standard form A*(x - h)^2 + C*(y - k)^2 = p
  • The locus when A = C
    • it is a circle if p > 0
    • it is a point if p = 0
    • it is not exited in real number system if p < 0
  • The locus when A and C have same signs
    • it is an ellipse if p > 0
    • it is a point if p = 0
    • it is not exited in real number system if p < 0
  • The locus when A and C have different signs
    • it is a hyperbola with principal axis y = k if p > 0
    • it gives two lines if p = 0
    • it is a hyperbola with different principal axis x = h if p < 0

Go to Begin

Q06. Equations of ellipse

1. Standard form in rectangular form
  • Equation : ((x - h)/a)^2 + ((y - k)/b)^2 = 1
  • Center at (h, k)
  • Principal axis is x = h if a > b
  • Principal axis is y = k if b > a
  • Focal length = f = Sqr(a^2 - b^2)
  • Directrix : D*e = (b^2)/a
2. Implicit form
  • Equation : F(x, y) = A*x^2 + C*y^2 + D*x + E*y + F = 0
  • A and C must be same signs
  • Change to standard form for interpretation
3. Parametric form
  • Equation : x = h + a*cos(A) and y = k + b*sin(A)
  • Use Pythagorean relation to change it into standard form for interpretation
  • Center at (h, k)
  • Sem-axese are a and b
  • Focal length = f = Sqr(a^2 - b^2)
4. Polar form with e < 0
  • R = (D*e)/(1 - e*sin(A))
  • R = (D*e)/(1 + e*sin(A))
  • R = (D*e)/(1 - e*cos(A))
  • R = (D*e)/(1 + e*cos(A))

Go to Begin

Q07. Sketch ellipse of F(x, y)

Sketch diagram of 2*x^2 + 4*y^2 + 4*x - 4*y - 9 = 0
  • Star the QB version program
  • Give input on keyboard
    • Type option 10 and press return
    • Type 2 and press return
    • Type 2, 4, 4, -4, -9 and press return
  • Use the diagram
    • 1. Find center
    • 2. Find semi-axese
    • 3. Find focal length

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 319
Question : Solve x^5 + 1 = 0 by construction
  • 1. Find root 1 at Angle = 000 : R1 = 1
  • 2. Find root 2 at Angle = 072 degrees : R2 = x2 + i*y2
  • 3. Find root 3 at Angle = 144 degrees : R3 = x3 + i*y3
  • 4. Find root 4 at Angle = 216 degrees : R4 = x4 + i*y4
  • 5. Find root 5 at Angle = 288 degrees : R5 = x5 + i*y5
Reference

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1