-
Q01 |
- Diagram : Prove Pythagorean Law
-
Q02 |
- Prove area BXYQ = area ABHK
-
Q03 |
- Prove area CXYF = area AMNC
-
Q04 |
- Reference
Q01. Diagram : How to prove ?
Hove to prove ?
- 1. Prove area BXYQ = area ABHK
- 2. Prove area CXYF = area AMNC
- 3. Then Area ABCD = area ABHK + area AMNC
Go to Begin
Q02. Diagram : Prove area BXYQ = area ABHK
Prove area BXYQ = area ABHK
- Area of triangle HBC = (area ABHK)/2
- Area of triangle ABQ = (area BXYQ)/2
- Triangle HBC is congruent to triangle ABQ
- AB = HB
- BC = BQ
- Angle HBC = angle ABQ
- Hence SAS condition is satisfied
Go to Begin
Q03. Reference
Prove area AMNC = area CXYP
- Area of triangle BCN = (area AMNC)/2
- Area of triangle ACP = (area CXYP)/2
- Triangle BCN is congruent to triangle ACP
- AC = CN
- BC = CP
- Angle BCN = angle ACP
- Hence SAS condition is satisfied
Go to Begin
Q04. Reference
Go to Begin
|