Mathematics Dictionary
Dr. K. G. Shih
Arcsin(x)
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Properties of arcsin(x)
Q02 |
- Find derivative of y = arcsin(x)
Q03 |
- Series of arcsin(x)
Q04 |
- Prove that arcsin(x) = arctan(x/Sqr(1 - x^2)
Q05 |
- arcsin(4/5) + arcsin(5/13) + arcsin(16/65) = pi/2
Q06 |
- Formula
Q01. Properties of arcsin(x)
Deifintion of y = arcsin(x)
If y = arcsin(x) then x = sin(y)
Composite function
Arcsin(sin(A)) = A.
Sin(arcsin(x)) = x.
Value of x is between -1 and 1
Properties of Y=arcsin(x)
1. Domain : real values of x between -1 an 1
2. Range : -pi/2 to pi/2
Special values
arcsin(0) = 0
arcsin(1/2) = pi/6
arcsin(Sqr(2)/2) = pi/4
arcsin(Sqr(3)/2) = pi/3
arcsin(1) = pi/2
Go to Begin
Q02. Find derivative of y = arcsin(x)
Let y = arcsin(x) and then x = sin(y)
Take derivative on both sides with respect x
Hence 1 = cos(y)*y'
Hence y' = 1/cos(y)
Since cos(y)^2 + sin(y)^2 = 1
Hence y' = 1/Sqr(1 - sin(y)^2)
Hence y' = 1/Sqr(1 - x^2)
Note : This the method to change trigonometry to algebra
Change algebra to trigonometry
This is method of the anti-derivative of y = arcsin(x).
Go to Begin
Q03. Series of arcsin(x)
Binomial Theory
(1 - x^2)^n = 1 + C(n,1)*(x^2) + C(n,2)*(x^2)^2 + ....
Let n = -1/2, then
C(n, 1) = n = -1/2
C(n, 2) = n*(n-1)/2!) = (1/2)*(3/2)/(2!) = 3/8
C(n, 3) = n*(n-1)*(n-2)/(3!) = -(1*2*3)/48
Etc.
1/Sqr(1 - x^2)
= (1 - x^2)^(-1/2)
= 1 + (-1/2)*(-x^2) + ((-1/2)*(-1/2 - 1)/(2!))*(x^4) + ....
= 1 + (x^2)/2 + (3/8)*x^4 + (1/8)*x^6 + .....
Series of arcsin(x)
Since
∫
[1/Sqr(1 - x^2)]dx = arcsin(x)
Using binomial theory we have
arcsin(x) =
∫
[1/Sqr(1 - x^2)]dx
=
∫
[1 + (x^2)/2 + 3*(x^4)/8 + ....]dx
= x - (x^3)/6 + 3*(x^5)/40 + .....
Go to Begin
Q04. Prove that arcsin(x) = arctan(x/Sqr(1 - x^2)
arcsin(x) = arctan(x/Sqr(1 - x^2)
Draw a right angle triangle
Let angle A = arcsin(x)
Then Opposite side is x
Hypothese is 1
Adjacent side = Sqr(1 - x^2)
Since tan(A) = Opp/Adj = x/Sqr(1 - x^2)
Hence A = arcsin(x) = arctan(x/sqr(1 - x^2))
arccos(x) = arctan(Sqr(1 - x^2)
Draw a right angle triangle
Let angle A = arccos(x)
Then Adjacent side is x
Hypothese is 1
Opposite side = Sqr(1 - x^2)
Since tan(A) = Opp/Adj = Sqr(1 - x^2)/1
Hence A = arccos(x) = arctan(sqr(1 - x^2))
Go to Begin
Q05. arcsin(4/5) + arcsin(5/13) + arcsin(16/65) = pi/2
Solution
TR 08 09
Go to Begin
Q06. Formula
sin(A) = Opp/Adj
sin(A)^2 + cos(A)^2 = 1
y = sin(x) and y' = cos(x)
y = arcsin(x) and y' = 1/Sqr(1 - x^2)
∫
[1/Sqr(1 - x^2)]dx = arcsin(x)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.