Mathematics Dictionary
Dr. K. G. Shih
Invesre Trigonometric Functions
Subjects
Symbol Defintion
Example : Sqr(x) = Square root o x
TR 08 00 |
- y = arcsin(x)
TR 08 01 |
- y = arcsin(x)
TR 08 02 |
- y = arccos(x)
TR 08 03 |
- y = arctan(x)
TR 08 04 |
- arcsin(x) + arcsin(y) = arcsin(x*Sqr(1-y^2) + y*Sqr(1-x^2))
TR 08 05 |
- arccos(x) + arccos(y) = arccos(x*y + Sqr(1-x^2)*Sqr(1-y^2))
TR 08 06 |
- arctan(x) + arctan(y) = arctan((x + y)/(1 - x*y))
TR 08 07 |
- Express arccos(x) in terms of atn(y)
TR 08 08 |
- arcsin(sin(A)+sin(B)) + arcsin(sin(A)-sin(B)) = pi/2, sin(A)^2+sin(B)^2 = ?
TR 08 09 |
- arcsin(4/5) + arcsin(5/13) + arcsin(16/65) = pi/2
TR 08 10 |
- Prove that 2*arctan(1/3) + arctan(1/7) = 45 degrees
TR 08 11 |
- More arcsin(x) and arctan(x)
Answers
TR 08 01. x = arcsin(y)
Defintion
If y = sin(x) then the inverse of sine function is x = arcsin(y).
Composite function properteis
sin(arcsin(x)) = x
arcsin(sin(A)) = A.
Example : Solve arcsin(-1/2) = x.
By defintion sin(x) = -1/2.
Hence x = pi + pi/6. or x = 2*pi - pi/6.
Gerenal solution : x = 2*n*pi - pi/6 or x = (2*n + 1)*pi + pi/6.
Go to Begin
TR 08 02. x = arccos(y)
Defintion
If y = cos(x) then the inverse of cosine function is x = arccos(y).
Composite function properteis
cos(arccos(x)) = x
arccos(cos(A)) = A.
Example : Solve arccos(1/2) = x.
By defintion cos(x) = 1/2.
Hence x = pi/3. or x = 2*pi - pi/3.
Gerenal solution : x = 2*n*pi + pi/3 or x = 2*n*pi - pi/3.
Go to Begin
TR 08 03. x = arctan(y)
Defintion
If y = tan(x) then the inverse of thangent function is x = arctan(y).
Composite function properteis
tan(arctan(x)) = x.
arctan(tan(A)) = A.
Example : Solve arctan(-1) = x.
By defintion tan(x) = -1.
Hence x = pi - pi/4. or x = 2*pi - pi/4.
Gerenal solution : x = n*pi - pi/4.
Example : Solve arctan(+1) = x.
By defintion tan(x) = 1.
Hence x = pi/4. or x = pi + pi/4.
Gerenal solution : x = n*pi + pi/4.
Go to Begin
TR 08 04. arcsin(x) + arcsin(y) = arcsin(x*Sqr(1-y^2) + y*Sqr(1-x^2))
Let A = arcsin(x) and then sin(A) = x. cos(A) = Sqr(1 - sin(A)^2) = Sqr(1 - x^2).
Let B = arcsin(y) and then sin(B) = y. cos(B) = Sqr(1 - sin(B)^2) = Sqr(1 - y^2).
Sin(A + B) = sin(A)*cos(B) + cos(A)*sin(B).
sin(A+B) = x*Sqr(1 - y^2) + y*Sqr(1 - x^2).
Hence A + B = arcsin(x*Sqr(1 - y^2) + y*Sqr(1 - x^2)).
Go to Begin
Q05. arccos(x) + arccos(y) = arccos(x*y + Sqr(1-x^2)*Sqr(1-x^2))
Let A = arccos(x) and then cos(A) = x. sin(A) = Sqr(1 - cos(A)^2) = Sqr(1 - x^2).
Let B = arccos(y) and then cos(B) = y. sin(B) = Sqr(1 - cos(B)^2) = Sqr(1 - y^2).
cos(A + B) = cos(A)*cos(B) + sin(A)*sin(B).
cos(A + B) = x*y + Sqr(1-x^2)*Sqr(1 - y^2).
Hence A + B = arccos(x*y + Sqr(1 - x^2)*Sqr(1 - y^2)).
Go to Begin
TR 08 06. arctan(x) + arctan(y) = arctan((x + y)/(1 - x*y))
Let A = arctan(x) and tan(A) = x.
Let B = arctan(y) and tan(B) = y.
tan(A + B) = (tan(A) + tan(B))/(1 - tan(A)*tan(B)).
tan(A + B) = (x + y)/(1 - x*y)
Hence A + B = arctan((x + y)/(1 - x*y))
Go to Begin
TR 08 07. Express arccos(x) in terms of arctan(y)
In computer language, sometimes only give the arctan(x) as Atn(x).
To find arccos(x), we have to prepare a subroutine.
The method is given below
Use triangle method.
Let A = arccos(x) and then x = cos(A).
Since cos(A) = Adj/Hyp. Let Adj = x and Hyp = 1.
Hence Opp = Sqr(1 - x^2).
Hence tan(A) = Opp/Adj = Sqr(1 - x^2)/x.
Hence A = arctan(Sqr(1 - x^2)/x).
Hence arccos(x) = arctan(Sqr(1 - x^2)/x).
Go to Begin
TR 08 08. arcsin(sin(A)+sin(B))+arcsin(sin(A)-sin(B))=pi/2, sin(A)^2+sin(B)^2 = ?
Solution
Change arcsin(D) = d to sin(d) = D
Let arcsin(sin(A)+sin(B)) = x and sin(x) = sin(A) + sin(B)
Let arcsin(sin(A)-sin(B)) = y and sin(y) = sin(A) - sin(B)
Change sin(x)^2 + sin(y)^2 in terms of A and B
Change sin(x)^2 + sin(y)^2
= (sin(A) + sin(B))^2 + (sin(A) - sin(B))^2
= 2*(sin(A)^2 + sin(B)^2)
Also we have x + y = pi/2 or y = (pi/2) - x
sin(x)^2 + sin(y)^2
= sin(x)^2 + sin(pi/2 - x)
= sin(x)^2 + cos(x)^2
= 1
Hence (sin(A)^2 + sin(B)^2) = (sin(x)^2 + sin(y)^2)/2 = 1/2
Go to Begin
TR 08 09. arcsin(4/5) + arcsin(5/13) + arcsin(16/65) = pi/2
Proof
Let arcsin(4/5) = A then sin(A) = 4/5 and cos(A) = 3/5
Let arcsin(5/13) = B, then sin(B) = 5/13 and cos(B) = 12/13
Let arcsin(16/65) = C, then sin(C) = 16/65
Find cos(A + B)
cos(A + B) = cos(A)*cos(B) - sin(A)*sin(B)
= (3/5)*(12/13) - (4/5)*(5/13)
= (36 - 20)/65
= 16/65
= sin(C)
Since sin(C) = 16/65 and cos(pi/2 - C) = sin(C) = 16/65
cos(A + B) = cos(pi/2 - C)
Hence A + B + C = pi/2
Hence arcsin(4/5) + arcsin(5/13) + arcsin(16/65) = pi/2
Go to Begin
TR 08 10. Prove that 2*arctan(1/3) + arctan(1/7) = 45 degrees
Proof
Let arctan(1/3) = A and then tan(A) = 1/3
let arctan(1/7) = B and then tan(B) = 1/7
Tan(2*A) = 2*tan(A)/(1 - tan(A)^2)
= 2*(1/3)/(1 - (1/3)^2)
= 3/4
Tan(2*A + B) = (tan(2*A) + tan(B))/(1 - tan(2*A)*tan(B))
= (3/4 + 1/7)/(1 - (3/4)*(1/7))
= (21 + 4)/(28 - 3)
= 1
Hence 2*A + B = 45 degrees
Hence 2*arctan(1/3) + arctan(1/7) = 45 degrees
Go to Begin
TR 08 11. More arcsin(x) and arctan(x)
Arcsin(x)
Arctan(x)
Go to Begin
TR 08 00.
Properties of inverse functions
1. arcsin(sin(A)) = A
2. arccos(sin(A)) = A
3. arctan(sin(A)) = A
4. arccsc(sin(A)) = A
5. arcsec(sin(A)) = A
6. arccot(sin(A)) = A
Properties of inverse functions
1. sin(arcsin(x)) = x
2. cos(arccos(x)) = x
3. tan(arctan(x)) = x
4. csc(arccsc(x)) = x
5. sec(arcsec(x)) = x
6. cot(arccot(x)) = x
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.