Mathematics Dictionary
Dr. K. G. Shih
Exponent
Subjects
Symbol Defintion
Example : Sqr(x) = Square root of x
AL 06 00 |
- Outlines
AL 06 01 |
- Defintions of e^x
AL 06 02 |
- Why do we need exponent ?
AL 06 03 |
- Why do we use expression e^x ranther than 2^x or 3^x ?
AL 06 04 |
- Laws of Expenonts
AL 06 05 |
- Properties of y = e^x
AL 06 06 |
- The exponential family founctions
AL 06 07 |
- Euler function e^(ix) = cos(x) + i*sin(x)
AL 06 08 |
- Inverse of y = e^x
AL 06 09 |
- Example : e^x + e^(2*x) + e^y + e^(2*y) = 12
AL 06 10 |
- Solve e^(2*x) + 3*e^x - 18 = 0
AL 06 11 |
- Example : How sketch e^x + e^(2*x) + e^y + e^(2*y) = 12 ?
AL 06 12 |
- Example : e^x + e^(2*x) + e^y + e^(2*y) = 12, find y if x = ln(2)
AL 06 13 |
- Example : Prove that (5^(n+1) + 5^(2*n))/(5 + 5^n) = 5^n
AL 06 14 |
- Example : Solve 8^(2*x+1) = 4^(5-x)
AL 06 15 |
- Example : Solve e^x + e^(2*x) < 12
AL 06 16 |
- The exponential family functions
AL 06 17 |
- Identities in the exponential family functions
Answers
AL 06 01. Defintions
Definition
Symbol : e^x means e to power x.
Symbol : EXP(x) means e to power x.
Symbol : e^1 = 1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + ....
Symbol : e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + ....
Note : Change expressions into mathematical forms used in classroom.
Go to Begin
AL 06 02. Why do we need exponent ?
Answer
Exponent makes mathematical expression simple to read.
Example : 2 multiply 2 one hundred times can be expressed as 2^100.
2 multiply 2 one hundred times which need write hundred 2 and hundred x.
2^100 is clearly shown hundred 2 and we do not to count them.
It is easier to read and simple to write.
This is an example to show that mathematics will make method simple and easy.
Example : Who did first use exponent ?
Exponential notation was introduced into math field by
French scientis Rene Descartes in 17th centrury.
Go to Begin
AL 06 03. Why do we use expression e^x ranther than 2^x or 3^x ?
The expression e^x has the following properties.
Expression y = e^x has slope = 1 when x = 0.
Derivative of e^x is remaining as e^x.
Diferentiation of e^x is also equal to e^x.
y = e^(-x) is symmetrical to y = e^x about the y-axis.
Go to Begin
AL 06 04. Laws of exponet
Laws
1. Multiplication : (a^x)*(a^y) = a^(x+y).
2. Division : (a^x)/(a^y) = a^(x-y).
3. Poser of power : (a^x)^m = a^(m*x).
4. Power of product : (a*b)^m = (a^m)*(b^m).
5. Power of quotient : (a/b)^m = (a^m)/(b^m).
Special exponent
1. (a^1) = a.
2. Zero exponent : (a^0) = 1.
3. Negative exponent : a^(-n) = 1/(a^n).
4. Rational exponent : a^(1/n) = nth radical of a.
Go to Begin
AL 06 05. Properties of y = e^x
Properties
1. y-intercept is at y = 1.
2. The slope is always positive and the curve is always increasing.
3. It has asymptote y = 0 and it has no negative value.
4. The curve is always concave upward.
5. y' = e^x and y" = e^x.
6. The series of e^x = Sum[(x^n)/n!] for n from 0 to infinite.
Sketch diagram : quick fee hand sketch
x = -1, y = e^x = 0.368
x = +0, y = e^x = 1
x = +1, y = e^x = 2.718
Go to Begin
AL 06 06. The exponential family founctions
Hyperbolic functions
Study subject
Hyperbolic functions.
Functions.
sinh(x) = (e^x - e^(-x)/2.
cosh(x) = (e^x + e^(-x)/2.
tanh(x) = sinh(x)/cosh(x).
csch(x) = 1/sinh(x).
coth(x) = 1/tanh(x).
sech(x) = 1/cosh(x).
Compare with trigonometric functions
Study subject
PM 14.
Go to Begin
AL 06 07. Euler function e^(ix) = cos(x) + i*sin(x)
Reference
Study subject
Complex numbers.
Properties
Series
e^x = 1 + x + x^2/2! + x^3/3! + ....
cos(x) = 1 - x^2/2! + x^4/4! - .....
sin(x) = x - x^3/3! + x^5/5! - .....
e^(ix) = 1 + (ix)^2/2! + (ix)^4/4! + .... + (ix) + (ix)^3/3! + (ix)^5/5! ....
e^(ix) = (1 - x^2/2! + x^4/4! + ....) + i*(x - x^3/3! + x^5/5! ....)
Hence e^(ix) = cos(x) + i*sin(x).
Example : e(i*pi) = cos(pi) + i*sin(pi) = -1.
Example : e^(i*pi) = -1 includes most significant symbols -, 1, e, i and pi
Go to Begin
AL 06 08. Inverse function of y = e^x
Definition
Inverse of y = e^x is y = ln(x).
Inverse of y = ln(x) is y = e^x.
Properties
Hence e^(ln(x)) = x.
Hence ln(e^x) = x.
Diagram
Diagrams of y=e^x and y=ln(x)
Program 06 05
Go to Begin
AL 06 09. Example : e^x + e^(2*x) + e^y + e^(2*y) = 12
Question
Find the equation of tangent to the curve
e^x + e^(2*x) + e^y + e^(2*y) = 12
when x = ln(3).
Solution
Find dy/dx.
e^x + 2*e^(2*x) + (e^y)*y' + 2*e^(2*y)*y' = 0.
Hence y' = -(e^x + 2*e^(2*y))/(e^y + 2*e^(2*y)).
Find e^(2*x) + e^x at x = ln(3)
e^x + e^(2*x) = e^x + (e^x)^2.
Since e^x = e^ln(3) = 3 (Formula).
e^x + e^(2*x) = 3 + 3^2 = 12.
Find e^(2*y) + e^y at x = ln(3)
e^x + e^(2*x) + e^y + e^(2*y) = 12.
Hence 12 + e^y + e^(2*y) = 12
Hence e^y + e^(2*y) = 0
Find slope at x = ln(3).
y' = -(12)/(0) = - infinite
Hence equation of tangent at x = ln(3) is a vertical line.
Hence equation of tangent is x = ln(3).
When x = ln(3), e^y + e^(2*y) = 12 - e^x -e^(2*x) = 12 - 3 - 9 = 0
Hence e^y + (e^y)^2 = 0.
Or (e^y)*(1 + e^y) = 0.
Or e^y = 0 and e^y = -1. Hence e^y = 0 and y = -infinite.
Hence x = ln(3) is the asymptote.
Exercise
Express the expression in the form of y = F(x)
Go to Begin
AL 06 10. Solve e^(2*x) + 3*e^x - 18 = 0
Solution
e^(2*x) = (e^x)^2.
Let e^x = u and we have u^2 + 3*x - 18 = 0.
Solve quadratic equation : (u - 3)*(u + 6) = 0.
Hence u = 3 or u = -6.
Since u = e^x is greater than zero, hence the solution is u = 3.
Hence e^x = 3 or x = ln(3).
Go to Begin
AL 06 11. Example : How to sketch e^x + e^(2*x) + e^y + e^(2*y) = 12 ?
Change it as y = F(x)
e^(2*y) = (e^y)^2
Hence (e^2)^2 + e^y + e^x + e^(2*x)- 12 = 0.
Use quadratic formula.
Hence e^y = (-1 + Sqr(1^2 - 4*1*(e^x + e^(2*x) - 12)))/(2*1).
Take logarithm on both sides
Hence y = ln(-1 + Sqr(1^2 - 4*(e^x + e^(2*x) - 12))/2)
Find y
Since for ln(u) and u > 0.
Hence -1 + Sqr(1 - 4*(e^x + e^(2*x) - 12) > 0.
Or Sqr(1 - 4*(e^x + e^(2*x) - 12) > 1.
For Sqr(t) and t > 0.
Hence (1 - 4*(e^x + e^(2*x) - 12)) > 0.
Or (e^x + 2^(2*x) - 12) < 0.
Or (e^x)^2 + e^x - 12 < 0.
Or (e^x)^2 + e^x - 12 < 0
Hence e^x <= (-1 + Sqr(1 + 4*1*12))/2 and e^x > 0.
Hence x is between 0 and ln((-1 + Sqr(49))/2).
Or x is between 0 and ln(3)
Special points : use e^(ln(t)) = t
x = ln(1) = 0
y = ln((-1 + Sqr(1 - 4*(1 + 1 - 12))/2) = ln((-1 + Sqr(41))/2).
x = ln(2) = 0.6931
y = ln((-1 + Sqr(1 - 4*(2 + 4 - 12))/2) = ln((-1 + Sqr(25))/2) = ln(2).
x = ln(3) = 1.0986
y = ln((-1 + Sqr(1 - 4*(3 + 9 - 12))/2) = ln(0) = -infinite.
diagram
Go to Begin
AL 06 12. e^x + e^(2*x) + e^y + e^(2*y) = 12. Find y if x = ln(2).
Solution
e^(2*y) = (e^y)^2.
Hence (e^2)^2 + e^y + e^(ln(2) + (e^(ln(2))^2 = 12.
Use formula e^(ln(t)) = t.
Hence (e^y)^2 + e^y + 2 + 2^2 = 12.
Hence (e^y)^2 + e^y - 6 = 0.
Hence (e^y - 2)*(e^y + 3) = 0
since e^y > 0, hence e^y = 2.
Hence y = ln(2).
Go to Begin
AL 06 13. Prove that (5^(n+1) + 5^(2*n))/(5 + 5^n) = 5^n
Proof
5^(n+1) = 5*5^n and 5^(2*n) = (5^n)^2
(5^(n+1) + 5^(2*n)) = 5*5^n + (5^n)^2 = (5^n)*(5 + 5^n).
Hence (5^(n+1) + 5^(2*n))/(5 + 5^n) = 5^n.
Go to Begin
AL 06 14. Solve 8^(2*x+1) = 4^(5-x)
Method 1
Since 8 = 2^3, hence 8^(2*x+1) = 2^(3*(2*x+1)
Since 4 = 2^2, hence 4^(5-x) = 2^(2*(5-x)
2^(3*(2*x+1) = 2^(2*(5-x))
Hence 3*(2*x+1) = 2*(5-x)
Hence Hence x = 7/8
Method 2
Take logarithm on both sides and use log(m^n) = n*log(m)
Hence (2*x+1)*log(8) = (5-x)*log(4)
Log(8) = log(2^3) = 3*log(2)
Log(4) = log(2^2) = 2*log(2)
Hence 3*(2*x+1) = 2*(5-x)
Hence Hence x = 7/8
Verify
x = 7/8 and 8^(2*x+1) = 2^(3*(2*7/8+1) = 2^(66/8) = 2^(33/4)
x = 7/8 and 4^(5-x) = 2^(2*(5-7/8)) = 2^(33/4)
Go to Begin
AL 06 15. Solve e^(x) + e^(2*x) LT 12
Solution
Since e^(2*x) = (e^x)^2.
Hence (e^x)^2 + e^x - 12 < 0.
Or (e^x - 3)*(e^x + 4) < 0.
Since e^x is positvie for real x .
Hence e^x + 4 greater than 0, hence e^x - 3 is negative.
Hence e^x is less than 3.
Hence x is greater than ln(1) and less than ln(3)
Go to Begin
AL 06 16. The exponential family functions
Hyperbolic functions
sinh(x) = (e^x - e^x)/2.
cosh(x) = (e^x + e^x)/2.
tanh(x) = sinh(x)/cosh(x)
csch(x) = 1/sinh(x)
sech(x) = 1/cosh(x)
coth(x) = 1/tanh(x)
Reference
Study subject
Diagrams of hyperbolic functions
Study subject
Properties of hyperbolic functions
Study subject
Properties of logarithm
Compare with trigonometrical functions : See PM Section 14
Go to Begin
AL 06 17. Examples of the exponential family functions
Exponent Family Programs
Study subject
Properties of hyperbolic functions
Questions in above programs
1. Prove that cosh(x)^2 - sinh(x)^2 = 1
2. Prove that sinh(2*x) = 2*sinh(x)*cosh(x)
3. Prove that sinh(x+y) = sinh(x)*cosh(x) + cosh(x)*sinh(x)
4. Prove that d/dx(sinh(x)) = cosh(x)
Go to Begin
AL 06 00. The exponential family functions
Laws of Exponent
1. Multiplication : (a^x)*(a^y) = a^(x+y).
2. Division : (a^x)/(a^y) = a^(x-y).
3. Poser of power : (a^x)^m = a^(m*x).
4. Power of product : (a*b)^m = (a^m)*(b^m).
5. Power of quotient : (a/b)^m = (a^m)/(b^m).
Special exponent
1. (a^1) = a.
2. Zero exponent : (a^0) = 1.
3. Negative exponent : a^(-n) = 1/(a^n).
4. Rational exponent : a^(1/n) = nth radical of a.
Series of e^x
e^x = 1 + x + (x^2)/2! + (x^3)/3! + .....
Value of e = 1 + 1 + 1/2! + 1/3! + .....
The value of e
Lim[(1 + 1/x)^x] = e if x goes to infinite
Lim[(1 + x)^(1/x)] = e if x goes to zero
The family of exponent
sinh(x) = (e^x - e^x)/2.
cosh(x) = (e^x + e^x)/2.
tanh(x) = sinh(x)/cosh(x)
csch(x) = 1/sinh(x)
sech(x) = 1/cosh(x)
coth(x) = 1/tanh(x)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.