Counter
Mathematics Dictionary
Dr. K. G. Shih

Binomial Theorem and Pascal Triangle
Questions


Answers


AL 07 01. Deifintion of Binomial Theorem

Factorial : n!
  • n! = 1*2*3*....*(n-1)*n
  • 0! = 1
  • 1! = 1
  • 2! = 1*2 = 2
  • 3! = 1*2*3 = 6
  • 4! = 1*2*3*4 = 24
  • 5! = 1*2*3*4*5 = 120. It has one trailor zero.
  • Question : How many trailor zeros in 20!
    • number of trailor zeros in n! is n/5 + n/(5^2) + n/(5^3) + ....
    • The sum is only the integral part.
    • For 20! : n = 20. Number of trialor zeros is 20/5 + 20/25 = 4
    • For 25! : n = 25. Number of trialor zeros is 20/5 + 25/25 + 25/125 = 5
Binomial theorem
  • (x + y)^n = C(n,0)*x^n + C(n,1)*(x^(n-1))*(y)+ C(n,2)*(x^(n-2))*(y^2) + ....
  • Coefficients of expansion C(n,r) for r = 0,1,2,3....n
  • C(n,r) = n*(n-1)*(n-2)*...*(n-r+1)/r! = coefficient of (r+1)th term
    • C(n,0) = C(n,n) = 1 .................. coeficient of 1st term
    • C(n,1) = n ........................... coeficient of 2nd term
    • C(n,2) = n*(n-1)/2! .................. coeficient of 3nd term
    • ...
    • C(n,n-2) = C(n,2) = n*(n-1)/2! ....... coeficient of 3rd last term
    • C(n,n-1) = C(n,1) = n ................ coeficient of 2nd last term
    • C(n,n-0) = C(n,0) = 1 ................ coeficient of last term
  • It can be expressed as (x+y)^n = Sum[C(n,r)*(x^(n-r))*(y^r)]
    • Power of x : n, (n-1), (n-2), ... 3, 2, 1, 0
    • Power of y : 0, 1, 2, 3, ........ (n-2), (n-1), n
    • Sum of power x and power y is n.
  • It has (n + 1) terms.
Properties of C(n,r)
  • Sum of the coeefficients = C(n,0) + C(n,1) + .... = 2^n.
    • Let x = y = 1, we have
    • C(n,0) + C(n,1) + .... = 2^n.
  • Sum of the coeefficients of odd terms = sum of coefficients of even terms.
    • Let x = 1 and y = -1, we have
    • C(n,0) + C(n,2) + ... = C(n,1) + C(n,3) + ...
  • C(n,r) = C(n,n-r)
    • LHS = n*(n-1)*...*(n-r+1)/r!
    • LHS = n*(n-1)*(n-2)*...*(n-r+1)*(n-r)!/((r!)*(n-r)!)
    • LHS = n!/((r!)*(n-1)!)
    • RHS = n*(n-1)*(n-2)*...*(n-(n-r)+1)/(n-1)!
    • RHS = n*(n-1)*(n-2)*....*(r+1)/(n-1)!
    • RHS = n*(n-1)*(n-2)*....*(r+1)*r!/((n-1)!)*r!)
    • RHS = n!/((r!)*(n-1)!)
    • Since LHS = RHS
    • Hence C(n,r) = C(n,n-r).
Computer program : Find n!, P(n,r) and C(n,r)

Go to Begin

AL 07 02. Coefficients of Binomial expansion

Expand (x+y)^2
  • (x+y)^2 = x^2 + 2*x*y + y^2
  • Coefficients : 1, 2, 1
Expand (x+y)^3
  • (x+y)^3 = x^3 + 3*(x^2)*y + 3*x*y^2 + y^3
  • Coefficients : 1, 3, 3, 1
Expand (x+y)^4
  • (x+y)^4 = x^4 + 4*(x^3)*y + 6*(x^2)*(y^2) + 4*x*y^3 + y^4
  • Coefficients : 1, 4, 6, 4, 1
Example : Find coefficients in (x + y)^4 from coefficients in expansion of (x+y)^3
  • Coefficients in (x+y)^3 : C(3,0)=1, C(3,1)=3, C(3,2)=3, C(3,3)=1
  • Coefficients in (x+y)^4 : 1, 4, 6, 4, 1
  • Coefficients of 1st term in (x+Y)^4 = C(4,0) = C(3,0) = ................ 1
  • Coefficients of 2nd term in (x+Y)^4 = C(4,1) = C(3,0) + C(3,1) = 1 + 3 = 4
  • Coefficients of 3rd term in (x+Y)^4 = C(4,2) = C(3,1) + C(3,2) = 3 + 3 = 6
  • Coefficients of 4th term in (x+Y)^4 = C(4,3) = C(3,2) + C(3,3) = 3 + 1 = 4
  • Coefficients of 4th term in (x+Y)^4 = C(4,4) = C(3,3) + C(3,0) = 3 + 1 = 1
Example : Find coefficients in (x+y)^5 and in (x+y)^6
  • Coeff in (x+y)^4 : 1, 04, 06, 04, 01
  • Coeff in (x+y)^5 : 1, 05, 10, 10, 05, 1
  • Coeff in (x+y)^6 : 1, 06, 15, 20, 15, 6, 1
Example : Find coefficient of (x^5)*(x*4) in expansion of (x+y)^n.
  • Find C(n,r)
    • C(n,r) is the coefficient (x^(n-r))*(y^r) in expansion of (x+y)^n
    • x power + y power = n.
  • Find n and r
    • n = 5 + 4 and r = 4.
    • Coeficient of (x^5)*(y^4) = C(9,4)
    • C(9,4) = 9*8*7*(9-4+1)/4!
    • C(9,4) = (9*8*7*6)/(4*3*2*1)
    • C(9,4) = 126.

Go to Begin

AL 07 03. Coefficients of binomial expansion and Pascal triangle

[Defintion] Pascal triangle : It is coeff of binomial expansion
  • 1 .................0..... Coeff in (x+y)^0
  • 1, 01 ................... Coeff in (x+y)^1
  • 1, 02, 01 ............... coeff in (x+y)^2
  • 1, 03, 03, 1 ............ coeff in (x+y)^3
  • 1, 04, 06, 04, 1 ........ coeff in (x+y)^4
  • 1, 05, 10, 10, 5, 1 ..... coeff in (x+y)^5
[Pscal triangle]
    Column ...... r0 r1 r2 r3 r4 r5 r6 r7 r8
    ---------------------------------
    n=0 ......... 01
    n=1 ......... 01 01
    n=2 ......... 01 02 01
    n=3 ......... 01 03 03 01
    n=4 ......... 01 04 06 04 01
    n=5 ......... 01 05 10 10 05 01
    n=6 ......... 01 06 15 20 15 06 01
    n=7 ......... 01 07 21 35 35 21 07 01
    n=8 ......... 01 08 28 56 70 56 28 08 01
[Example] Find coefficient of (x^3)*(y^5) in expansion of (x+y)^n
  • The power n = 3 + 5 = 8
  • For y^5 we know r = 5
  • At row n = 8 and r = 5 we have C(n,r) = C(8,5) = 70

Go to Begin

AL 07 04. Sequence in Pascal triangle

Sequence along r0
  • r0 sequence : 1, 1, 1, 1, ....
  • nth term :T(n) = 1
  • Sum of n terms = S(n) = Sum[n] = n
Sequence along r1
  • r0 sequence : 1, 2, 3, 4, 5, ....
  • nth term :T(n) = n
  • Sum of n terms = S(n) = Sum[n] = n*(n+1)/2
Sequence along r2
[Example] Prove that Sum[n*(n+1)/2] = n*(n+1)*(n+2)/3!
  • Sum[n*(n+1)/2]
  • = Sum[n^2/2]+Sum[n/2]
  • = (Sum(n^2) + Sum[n])/2
  • = (n*(n+1)*(2*n+1)/6 + n*(n+1)/2)/2
  • = n*(n+1)*(2*n+1)/12 + n*(n+1)/4
  • = n*(n+1)*(2*n+1)/3+1)/4
  • = n*(n+1)*(2*n+4)/12
  • = n*(n+1)*(n+2)/3! where 3!=1*2*3=6
[Example] Prove that Sum[C(n+1,2)] = C(n+2,3)
  • Since C(n+1,2) = n*(n+1)/2!
  • Since C(n+2,3) = n*(n+1)*(n+2)/3!
  • Hence Sum[C(n+1,2)] = C(n+2,3)

Go to Begin

AL 07 05. What is r3 series ?

Sequence
  • Squence along r3 column : 1, 4, 10, 20, 35, 56, ....
  • T(n) = nth term = n*(n+1)*(n+2)/3!
  • S(n) = Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
  • Hence Sum[C(n+2, 3)] = C(n+3, 4)
    • 1st difference is r2 series
    • 2nd difference is r1 series
    • 3nd difference is common difference d=1
[Example] Prove that Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
  • Sum[n*(n+1)*(n+2)/6]
  • = Sum[n^3/6]+Sum[3*n^2/6]+Sum[2*n/6]
  • = (n*(n+1)/2)/6 + n*(n+1)*(2*n+1)/12 + n*(n+1)/12
  • = n*(n+1)*[(n*(n+1)/24 + (2*n+1)/12 +1/12]
  • = n*(n+1)*(n^2+5*n+6)/24
  • = n*(n+1)*(n+2)*(n+3)/4! where 4!=1*2*3*4
  • Hence Sum[C(n+2,3)] = C(n+3,4)

Go to Begin

AL 07 06. What is the sequence along r4 column ?

Sequences
  • Sequence along r4 column : 1, 5, 15, 35, 70, ....
  • T(n) = nth term = n*(n+1)*(n+2)*(n+3)/4!
  • S(n) = Sum[T(n)] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
  • Hence Sum[C(n+3, 4)] = C(n+4, 5)
  • Difference
    • 1st difference is r3 series
    • 2nd difference is r2 series
    • 3rd difference is r1 series
    • 4th difference is common difference d=1

Go to Begin

AL 07 07. What is the sequence along r5 column ?

[Definition]
  • Sequence along r5 column
  • T(n) = nth term = n*(n+1)*(n+2)*(n+3)(n+4)/5!
  • S(n) = Sum[T(n)] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
  • Hence Sum[C(n+4, 5)] = C(n+5, 6)
  • Difference
    • 1st difference is r4 series
    • 2nd difference is r3 series
    • 3rd difference is r2 series
    • 4th difference is r1 series
    • 5th difference is common difference d=1
[Coclusion]
  • Sum[C(n+0,1)] = C(n+1,2)
  • Sum[C(n+1,2)] = C(n+2,3)
  • Sum[C(n+2,3)] = C(n+3,4)
  • Sum[C(n+3,4)] = C(n+4,5)
  • Sum[C(n+4,5)] = C(n+5,6)

Go to Begin

AL 07 08. Find Sum[n^4] by using Sum[C(n+3,4)] = C(n+4,5)

Method
  • Sum[C(n+3),4] = Sum[n*(n+1)*(n+2)*(n+3)/4!] = C(n+4,5)
  • (Sum[n^4] + 6*Sum[n^3] + 11*Sum[n^2] + 6*Sum[n])/24 = C(n+4,5)
  • We know that
    • Sum[1] = n.
    • Sum[n] = n*(n+1)/2.
    • Sum[n^2] = n*(n+1)*(2*n+1)/6.
    • Sum[n^3] = (n*(n+1)/2)^2
  • The answer is Sum[n^4] = (6*n^5 + 5*n^4 + 10*n^3 - n)/30

Go to Begin

AL 07 09. Fibonacci's sequence in Pascal triangle
Text and diagram
Example
  • Fibonacci's Sequence : 1, 1, 2, 3, 5, 8, 13, ...
  • Recursion formula :
    • T(0) = 0.
    • T(1) = 1.
    • T(n+2) = T(n+1) + T(n)

Go to Begin

AL 07 10. Series from C(n,r)

[Sum in C(n,r) Form]
  • Sum[C(n+1,2)] = C(n+2,3)
  • Sum[C(n+2,3)] = C(n+3,4)
  • Sum[C(n+3,4)] = C(n+4,5)
  • Sum[C(n+4,5)] = C(n+5,6)
[Sum in factor Form]
  • Sum[1] = n
  • Sum[n] = n*(n+1)/2!
  • Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
  • Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
  • Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
[Other series]

Go to Begin

AL 07 11. Constant oefficient in (x + 1/(x^2))^n

The rth term
  • rth term = C(n,r)*(x^(n-r))*(1/(x^2))^r)
  • = C(n,r)*(x^(n-3*r))
Constant term
  • Power n - 3*r = 0 and r is integer
  • Hence r = n/3
  • Hence n must be multiple of 3.

Go to Begin

AL 07 012. Expand Sqr(1+x^2) into series

By binomial theory
  • Sqr(1 + x^2)
  • = (1 + x^2)^(1/2)
  • = 1 +(1/2)*(x^2) +((1/2)*(1/2-1)/2!)*((x^2)^2) +((1/2)*(1-1/2)*(1/2-2)/3!)*(x^2)^3 + ...
  • = 1 + (1/2)*(x^2) - (1/((2^2)*2!)*(x^4) + (1*3/(2^3)*3!)*(x^6) + ...
Find Sqr(2) using above series
  • Let x = 1
  • Sqr(2) = 1 + 1/2 - 1/8 + 1/16 - (1*3*5)/((2^4)*4!) + (1*3*5*7)/((2^5)*5!) - ...
  • = 1 + 0.5 - 0.125 + 0.0625 - 0.03906 + 0.02734 - 0.025078....
  • = 1.40070
  • Error = 1.41421 - 1.40070 = 0.01351 =0.95%
  • What is the error if we use the 8th term ?
Find Sqr(26) to 4th term by binomail expansion
  • Sqr(26) = Sqr(25 + 1)
  • = 5*(1 + (1/5)^2)
  • = 5*(1 + (1/2)*(1/5)^2 - (1/8)*(1/5)^4 + (1/16)*(1/5)^6
  • = 5*(1 + 0.02 - 0.0002 + 0.000028) = 5*(1.020228) = 5.099114

Go to Begin

AL 07 13. Use Pascal triangle write down coefficient of expansion terms of (x+y)^7

Go to Begin

AL 07 14. Expansion of (x+1)^n

Expansions of (x+1)^n
  • (x+1)^1 = x^1 + 1*x^0
  • (x+1)^2 = x^2 + 2*x^1 + 1.
  • (x+1)^3 = x^3 + 3*x^2 + 3*x + 1.
  • (x+1)^4 = x^4 + 4*x^3 + 6*x^2 + 4*x + 1.
  • (x+1)^5 = x^5 + 5*x^4 + 10*x^3 + 10*x^2 + 5*x + 1
Notes
  • x^0 = 1.
  • x^1 = x.

Go to Begin

AL 07 15. Find coefficient 0f (x^3)*(y^5) in expansion (x+y)^n

[Defintion] Pascal triangle : It is coeff of binomial expansion
  • 1, 2, 1 are ceeficients of expansion of (x+y)^2
  • 1, 3, 3, 1 are ceeficients of expansion of (x+y)^3
  • 1, 4, 6, 4, 1 are ceeficients of expansion of (x+y)^4
[Pscal triangle]
    Column ...... r0 r1 r2 r3 r4 r5 r6 r7 r8
    ---------------------------------
    n=0 ......... 01
    n=1 ......... 01 01
    n=2 ......... 01 02 01
    n=3 ......... 01 03 03 01
    n=4 ......... 01 04 06 04 01
    n=5 ......... 01 05 10 10 05 01
    n=6 ......... 01 06 15 20 15 06 01
    n=7 ......... 01 07 21 35 35 21 07 01
    n=8 ......... 01 08 28 56 70 56 28 08 01
[Example] Find coefficient of (x^3)*(y^5) in expansion of (x+y)^n
  • The x power and y power = n = 3 + 5 = 8.
  • For y^5 we know it is in (5+1)th term (r =5).
  • At row n=8 and r=5 we have C(n,r) = C(8,5) = 56.
  • Hence the coefficient of (x^3)*(y^5) is 56.
  • Or use formula : C(8,5) = C(8,3) = (8*7*6)/(3*2*1) = 56.

Go to Begin

AL 07 16. Expansion of 1/(1 + x^2)

Expand 1/(1+x^2) into series
  • 1/(1+x^2)
  • = (1 + x^2)^(-1)
  • = 1 +(-1)*(x^2) +((-1)*(-1-1)/(2!))*((x^2)^2) +((-1)*(-1-1)*(-1-2)/(3!))*((x^2)^3)+ ...
  • = 1 - x^2 + x^4 - x^6 + x^8 + .....

Go to Begin

AL 07 17. C(n,r-1) + C(n,r) = C(n+1,r)

For n = 1, 2, 3 : Proof using Pascal triangle
  • n = 1 : C(1,0) = 1, C(1,1) = 1
  • n = 2 : C(2,0) = 1, C(2,1) = 2, C(2,2) = 1
  • n = 3 : C(3,0) = 1, C(3,1) = 3, C(3,2) = 3, C(3,3) = 1
  • n = 4 : C(4,0) = 1, C(4,1) = 4, C(4,2) = 6, C(4,3) = 4, C(4,4)
  • For n = 1
    • C(1,0) + C(1,1) = 2 and C(2,1) = 2. Hence C(1,0) + C(1,1) = C(2,1)
  • For n = 2
    • C(2,0) + C(2,1) = 3 and C(3,1) = 3. Hence C(2,0) + C(2,1) = C(3,1)
    • C(2,1) + C(2,2) = 3 and C(3,2) = 3. Hence C(2,1) + C(2,2) = C(3,2)
  • For n = 3
    • C(3,0) + C(3,1) = 4 and C(4,1) = 4. Hence C(3,0) + C(3,1) = C(4,1)
    • C(3,1) + C(3,2) = 6 and C(4,2) = 6. Hence C(3,1) + C(3,2) = C(4,2)
    • C(3,2) + C(3,3) = 4 and C(4,3) = 4. Hence C(3,2) + C(3,3) = C(4,3)
For r = r+1 : We expect C(n,r) + C(n,r+1) = C(n+1,r+1)

Go to Begin

AL 07 18. Coefficients of x^(r-1), x^r and x^(r+1) are 3 consecutive AP in (1+x)^n

Question : Prove that n^2 - n*(4*r + 1) +4*r^2 - 2 = 0
  • Coeff of x^(r - 1) = a = (n)*(n-1)*.....*(n-r+2)/(r-1)!
  • Coeff of x^(r - 0) = b = (n)*(n-1)*.....*(n-r+2)*(n-r+1)/(r-0)!
  • Coeff of x^(r + 1) = c = (n)*(n-1)*.....*(n-r+2)*(n-r+1)*(n-r+0)/(r+1)!
  • Coeff a,b,c are consecutive terms in AP, hence b = (a + c)/2
  • b = (n-r+1)/r! = (1/(r-1)! + (n-r+1)*(n-r)/(r+1)!)/2
  • Since (r+1)! = ((r-1)!)*r*(r+1) and r! = ((r-1)!)*r
  • (n-r+1)/r = ( 1 + (n-r+1)*(n-r)/(r*(r+1))
  • Hence (n-r+1)*r*(r+1) = r*(r+1) + (n-r+1)*(n-r)
  • Simplify we have n^2 - n*(4*r + 1) +4*r^2 - 2 = 0
Find a, b, c if n = 14
  • 14^2 - 14*(4*r + 1) + 4*r^2 - 2 = 0
  • 196 - 56*r - 14 + 4*r^2 - 2 = 0
  • 4*r^2 - 56*r + 180 = 0
  • r^2 - 14 + 45 = 0
  • (r - 5)*(r - 9) = 0
  • When r = 5
    • a = C(14,4) = 14*13*12*11/4!
    • b = C(14,5) = 14*13*12*11*10/5!
    • c = C(14,6) = 14*13*12*11*10*9/6!
    • Verify : b = 14*13*12*11*10/(4!)*5 = 2*(14*13*12*11)/4!
    • a + c = (14*13*12*11/(4!))*(1 + 10*9/(5*6)) = 4*(14*13*12*11/(4!))
    • b = (a + c)/2
  • When r = 9 : we use C(n,r) = C(n,n-r)
    • a = C(14, 9-1) = C(14, 14-08) = C(14,6)
    • b = C(14, 9-0) = C(14, 14-09) = C(14,5)
    • c = C(14, 9+1) = C(14, 14-10) = C(14,4)
    • The results same as when r = 5 : b unchange and a, c are interchanged

Go to Begin

AL 07 19. Coefficients of (x^p)*(y^q)*(z^r) in (x+y+z)^n

Coefficient of (x^p)*(y^q) in (x+y)^n
  • p+q = n
  • Binomial coefficient (x^(n-r))*(y^r) = C(n,r)
  • = n*(n-1)*...*(n-r+1)/(r!)
  • = n*(n-1)*...*(n-r+1)*((n-r)!)/((r!)*(n-r)!)
  • = n!/((r!)*(n-r)!)
  • Let p = r then q = n - r
  • Hence coefficients of (x^p)*(y^q) = n!/((p!)*(q!))
Coefficients of (x^p)*(y^q)*(z^r) in (x+y+z)^n
  • n = p+q+r
  • The coefficient = n!/(p!)*(q!)*(r!)

Go to Begin

AL 07 20. Quiz and answer


Go to Begin

AL 07 00. Outlines

Binomial theory
  • (x + y)^n = C(n,0)*x^n + C(n,1)*(x^(n-1))*(y)+ C(n,2)*(x^(n-2))*(y^2) + ....
  • Coefficients of expansion C(n,r) for r = 0,1,2,3....n
  • C(n,r) = n*(n-1)*(n-2)*...*(n-r+1)/r! = coefficient of (r+1)th term
  • C(n,r) = n!/((r!)*((n-r)!))
  • Coefficient of (x^p)*(y^p) in expansion of (x+y)^n : n!/(p!)*(q!)) and p+q = n
Polynomial theory
  • Coefficient of (x^p)*(y^p)*(z^r) in expansion of (x+y+z)^n : n!/(p!)*(q!)*(r!))
  • Where p+q+r = n
Series from C(n,r) : Summation in C(n,r) Form
  • Sum[C(n+1,2)] = C(n+2,3)
  • Sum[C(n+2,3)] = C(n+3,4)
  • Sum[C(n+3,4)] = C(n+4,5)
  • Sum[C(n+4,5)] = C(n+5,6)
Summation in factor Form
  • Sum[1] = n
  • Sum[n] = n*(n+1)/2!
  • Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
  • Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
  • Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
Other series
Pscal triangle
    Column ...... r0 r1 r2 r3 r4 r5 r6 r7 r8
    ---------------------------------
    n=0 ......... 01
    n=1 ......... 01 01
    n=2 ......... 01 02 01
    n=3 ......... 01 03 03 01
    n=4 ......... 01 04 06 04 01
    n=5 ......... 01 05 10 10 05 01
    n=6 ......... 01 06 15 20 15 06 01
    n=7 ......... 01 07 21 35 35 21 07 01
    n=8 ......... 01 08 28 56 70 56 28 08 01

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1