Mathematics Dictionary
Dr. K. G. Shih
Binomial Theory
Subjects
Symbol Defintion
Example : x^2 = square of x
AN 16 00 |
- Outline
AN 16 01 |
- Binomial Theory
AN 16 02 |
- Expand 1/(1+x) into theory
AN 16 03 |
- Expand 1/(1-x) into theory
AN 16 04 |
- Expand 1/(1+x^2) into theory
AN 16 05 |
- Expand 1/(1-x^2) into theory
AN 16 06 |
- Prove that Lim[(1 + 1/x)^x] = e
AN 16 07 |
- expand Sqr(1 + x^2)
AN 16 08 |
-
AN 16 09 |
-
AN 16 10 |
-
AN 16 00 |
- Outines
Answers
AN 16 01. Binomial theory
Definition
(x + y)^n = x^n + C(n,1)*(x^(n-1))*(y^1) + C(n,2)*(x^(n-2))*(y^2) + ....
C(n,r) is binomial coefficient
C(n,r) = (n*(n-1)*(n-2)*....(n-r+1)/(r!)
Examples of C(n,r) : Symmetrical pattern
C(n,0) = 1
C(n,1) = n
C(n,2) = n*(n-1)/2!
C(n,n-2) = n*(n-1)*(n-2)*...(3)*(2)/(n-1)! = n*(n-1)/2!
C(n,n-1) = n
C(n,n) = 1
Reference
Study Subjects |
Algebra : Binomial theory
Go to Begin
AN 16 02. Expand 1/(1 + x) into series
Expand using binomial theory
1/(1 + x)
= (1 + x)^(-1)
= 1 + (-1)*x + (-1)(-1-1)*x^2/2! + (-1)*(-1-1)*(-1-2)*x^3/3! + ......
= 1 - x + x^2 - x^3 + x^4 - x^5 + ....
This can be used to express special functions into series
Go to Begin
AN 16 03. AN 16 03. expand 1/(1 - x) into series
Expand using binomial theory
1/(1 - x)
= (1 - x)^(-1)
= 1 + (-1)*(-x) + (-1)(-1-1)*(-x)^2/2! + (-1)*(-1-1)*(-1-2)*(-x)^3/3! + ......
= 1 + x + x^2 + x^3 + x^4 + x^5 + ....
This can be used to express special functions into series
Go to Begin
AN 16 04. expand 1/(1 + x^2) into series
Expand using binomial theory
1/(1 + x^2)
= (1 + x^2)^(-1)
= 1 + (-1)*(x^2) + (-1)(-1-1)*(x^2)^2/2! + (-1)*(-1-1)*(-1-2)*(x^2)^3/3! + ......
= 1 - x^2 + x^4 - x^6 + x^8 - x^10 + ....
This can be used to express special functions into series
Go to Begin
AN 16 05. expand 1/(1 - x^2) into series
Expand using binomial theory
1/(1 - x^2)
= (1 + x^2)^(-1)
= 1 + (-1)*(-x^2) + (-1)(-1-1)*(-x^2)^2/2! + (-1)*(-1-1)*(-1-2)*(-x^2)^3/3! + ......
= 1 + x^2 + x^4 + x^6 + x^8 + x^10 + ....
Note
This can be used to express special functions into series
Go to Begin
AN 16 06. Prove that Lim[(1 + 1/x)^x] = e as x goes to infinite
Graphic solution
Subjects
Limit
Prove using binomial theory
Binomial theory
(1 + 1/x)^x
= 1 + x*(1/x) + (x*(x-1)*(1/x)^2)/2! + (x*(x-1)(x-2)*(1/x)^3)/3! + .....
Lim[(x*(x-1)*(1/x)^2)/2!]
= Lim[(1*(1-1/x)]/2! = 1/2! as x goes to infintit
Lim[(x*(x-1)(x-2)*(1/x)^3)/3!]
= Lim[(1*(1-1/x)*(1-2/x)]/3! = 1/3! as x goes to infintit
Hence Lim[(1 + 1/x)^2] = 1 + 1 + 1/2! + 1/3! + .....
The series of e^x
e^x = 1 + x + (x^2)/2! + (x^3)/3! + .....
Let x = 1
Hence e = 1 + 1 + 1/2! + 1/3! + .....
Hence Lim[(1 + 1/x)^2] = e as x goes to infinite
Change to a new limit expression
Let 1/x = u, u goes to zero as x goes to infinite
Lim[(1 + u)^(1/u)] = e as u goes to zero
This limit is used to find the derivative of ln(u)
Go to Begin
AN 16 07. Expand Sqr(1 + x^2) into series
See
Subjects
AL 07 12
Go to Begin
AN 16 08. Answer
Go to Begin
AN 16 09. Answer
Go to Begin
AN 16 10. Answer
Go to Begin
AN 16 00. Outlines
Express function as series
01. Binomial theory
02. 1/(1 + x) = 1 - x + x^2 - x^3 + ...
03. 1/(1 - x) = 1 - x + x^2 - x^3 + ...
04. 1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ...
05. 1/(1 - x^2) = 1 + x^2 + x^4 + x^6 + ...
06. Lim[(1 + x)^(1/x)] = e if x goes to infinite
07. Lim[(1 + 1/x)^(x)] = e if x goes to 0
08. e^x = 1 + x + (x^2)/2! + (x^3)/3! + .....
09. e = 1 + 1 + 1/(2!) + 1/(3!) + .....
10. Sqr(1 + x^2) =
Application in calculus
10.
Study Subjects |
Calculus : Series in CA 18 00
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.