Counter
Mathematics Dictionary
Dr. K. G. Shih

Binomial Theory
Subjects

  • AN 16 00 | - Outline
  • AN 16 01 | - Binomial Theory
  • AN 16 02 | - Expand 1/(1+x) into theory
  • AN 16 03 | - Expand 1/(1-x) into theory
  • AN 16 04 | - Expand 1/(1+x^2) into theory
  • AN 16 05 | - Expand 1/(1-x^2) into theory
  • AN 16 06 | - Prove that Lim[(1 + 1/x)^x] = e
  • AN 16 07 | - expand Sqr(1 + x^2)
  • AN 16 08 | -
  • AN 16 09 | -
  • AN 16 10 | -
  • AN 16 00 | - Outines

  • Answers


    AN 16 01. Binomial theory

    Definition
    • (x + y)^n = x^n + C(n,1)*(x^(n-1))*(y^1) + C(n,2)*(x^(n-2))*(y^2) + ....
    • C(n,r) is binomial coefficient
    • C(n,r) = (n*(n-1)*(n-2)*....(n-r+1)/(r!)
    • Examples of C(n,r) : Symmetrical pattern
      • C(n,0) = 1
      • C(n,1) = n
      • C(n,2) = n*(n-1)/2!
      • C(n,n-2) = n*(n-1)*(n-2)*...(3)*(2)/(n-1)! = n*(n-1)/2!
      • C(n,n-1) = n
      • C(n,n) = 1
    Reference

    Go to Begin

    AN 16 02. Expand 1/(1 + x) into series

    Expand using binomial theory
    • 1/(1 + x)
    • = (1 + x)^(-1)
    • = 1 + (-1)*x + (-1)(-1-1)*x^2/2! + (-1)*(-1-1)*(-1-2)*x^3/3! + ......
    • = 1 - x + x^2 - x^3 + x^4 - x^5 + ....
    • This can be used to express special functions into series

    Go to Begin

    AN 16 03. AN 16 03. expand 1/(1 - x) into series

    Expand using binomial theory
    • 1/(1 - x)
    • = (1 - x)^(-1)
    • = 1 + (-1)*(-x) + (-1)(-1-1)*(-x)^2/2! + (-1)*(-1-1)*(-1-2)*(-x)^3/3! + ......
    • = 1 + x + x^2 + x^3 + x^4 + x^5 + ....
    • This can be used to express special functions into series

    Go to Begin

    AN 16 04. expand 1/(1 + x^2) into series

    Expand using binomial theory
    • 1/(1 + x^2)
    • = (1 + x^2)^(-1)
    • = 1 + (-1)*(x^2) + (-1)(-1-1)*(x^2)^2/2! + (-1)*(-1-1)*(-1-2)*(x^2)^3/3! + ......
    • = 1 - x^2 + x^4 - x^6 + x^8 - x^10 + ....
    • This can be used to express special functions into series

    Go to Begin

    AN 16 05. expand 1/(1 - x^2) into series

    Expand using binomial theory
    • 1/(1 - x^2)
    • = (1 + x^2)^(-1)
    • = 1 + (-1)*(-x^2) + (-1)(-1-1)*(-x^2)^2/2! + (-1)*(-1-1)*(-1-2)*(-x^2)^3/3! + ......
    • = 1 + x^2 + x^4 + x^6 + x^8 + x^10 + ....
    Note
    • This can be used to express special functions into series

    Go to Begin

    AN 16 06. Prove that Lim[(1 + 1/x)^x] = e as x goes to infinite
    Graphic solution
    Prove using binomial theory
    • Binomial theory
      • (1 + 1/x)^x
      • = 1 + x*(1/x) + (x*(x-1)*(1/x)^2)/2! + (x*(x-1)(x-2)*(1/x)^3)/3! + .....
    • Lim[(x*(x-1)*(1/x)^2)/2!]
    • = Lim[(1*(1-1/x)]/2! = 1/2! as x goes to infintit
    • Lim[(x*(x-1)(x-2)*(1/x)^3)/3!]
    • = Lim[(1*(1-1/x)*(1-2/x)]/3! = 1/3! as x goes to infintit
    • Hence Lim[(1 + 1/x)^2] = 1 + 1 + 1/2! + 1/3! + .....
    • The series of e^x
      • e^x = 1 + x + (x^2)/2! + (x^3)/3! + .....
      • Let x = 1
      • Hence e = 1 + 1 + 1/2! + 1/3! + .....
    • Hence Lim[(1 + 1/x)^2] = e as x goes to infinite
    Change to a new limit expression
    • Let 1/x = u, u goes to zero as x goes to infinite
    • Lim[(1 + u)^(1/u)] = e as u goes to zero
    • This limit is used to find the derivative of ln(u)

    Go to Begin

    AN 16 07. Expand Sqr(1 + x^2) into series
    See

    Go to Begin

    AN 16 08. Answer

    Go to Begin

    AN 16 09. Answer

    Go to Begin

    AN 16 10. Answer

    Go to Begin

    AN 16 00. Outlines
    Express function as series
    • 01. Binomial theory
    • 02. 1/(1 + x) = 1 - x + x^2 - x^3 + ...
    • 03. 1/(1 - x) = 1 - x + x^2 - x^3 + ...
    • 04. 1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ...
    • 05. 1/(1 - x^2) = 1 + x^2 + x^4 + x^6 + ...
    • 06. Lim[(1 + x)^(1/x)] = e if x goes to infinite
    • 07. Lim[(1 + 1/x)^(x)] = e if x goes to 0
    • 08. e^x = 1 + x + (x^2)/2! + (x^3)/3! + .....
    • 09. e = 1 + 1 + 1/(2!) + 1/(3!) + .....
    • 10. Sqr(1 + x^2) =
    Application in calculus

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1