Mathematics Dictionary
Dr. K. G. Shih
Binomial Theorem and Calculus
Questions
Q01 |
- What is Binomial Theorem ?
Q02 |
- Coefficients of Binomial expansaion
Q03 |
- Express 1/(1+x^2) into series and find series of arctan(x)
Q04 |
- How to get the binomial series ?
Q05 |
- Express 1/Asq(1-x^2) in series and Find seires of arcsin(x)
Q06 |
- Expand x/(1-x)^2 in series and find Sum[n/(2^n)]
Q07 |
- Express Sqr(1+x) in series
Q08 |
- Express 1/(1+x) in series
Q09 |
-
Q10 |
- Formula
Q11 |
- Pascal triangle and binomial theorem
Answers
Q1. Deifintion of Binomial Theorem
A1. Answer
(x + y)^n = C(n,0)*x^n + C(n,1)*(x^(n-1))*(y)+ C(n,2)*(x^(n-2))*(y^2) + ....
C(n,r) = n*(n-1)*(n-2)*...*(n-r+1)/r!.
C(n,0) = C(n,n) = 1.
C(n,1) = C(n,n-1) = n
It can be expressed as (x+y)^n = Sum[C(n,r)*(x^(n-r))*(y^r)]
It has (n + 1) terms.
Sum of the coeefficients = C(n,0) + C(n,1) + .... = 2^n.
Let x = y = 1 and we have.
C(n,0) + C(n,1) + .... = 2^n.
Sum of the coeefficients of odd terms = sum of coefficients of even terms.
Let x = 1 and y = -1, we have
C(n,0) + C(n,2) + ... = C(n,1) + C(n,3) + ...
Prove that C(n,r) = C(n,n-r)
C(n,r) = n*(n-1)*...*(n-r+1)/r!
= n*(n-1)*(n-2)*...*(n-r+1)*(n-r)!/((r!)*(n-r)!)
= n!/((r!)*(n-1)!)
C(n,n-r) = n*(n-1)*(n-2)*...*(n-(n-r)+1)/(n-1)!
= n*(n-1)*(n-2)*....*(r+1)/(n-1)!
= n*(n-1)*(n-2)*....*(r+1)*r!/((n-1)!)*r!)
= n!/((r!)*(n-1)!)
Hence C(n,r) = C(n,n-r).
Go to Begin
Q2. Coefficients of Binomial expansion
A2. Answer
C(n,r) is the coefficient (x^(n-r))*(y^r) in (x+y)^n
x power + y power = n.
Find coefficient of (x^5)*(x*4) in expansion of (x+y)^n.
n = 5 + 4 and r = 4.
Coeficient of (x^5)*(y^4) = C(9,4)
= 9*8*7*(9-4+1)/4!
= (9*8*7*6)/(4*3*2*1)
= 126.
Go to Begin
Q03. Application : Express 1/(1+x^2) into series and find series of arctan(x)
Use binomial rheorem
n = -1
(1 + x^2)^(-1) = 1 + (-1)*(x^2) + (-1)*(-2)*((x^2)^2)/2! + ....
(1 + x^2)^(-1) = 1 - x^2 + x^4 - x^6 + x^8 - ....
Example : Find series of arctan(x)
Arctan(x) =
∫
dx/(1+x^2)
Arctan(x) =
∫
(1 - x^2 + x^4 - x^5 + .....)*dx
Arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + .....
Go to Begin
Q04. How to get the binomial series
Use Newton's accomplishments
F (x) = (1 + x)^n .................................. F (0) = 1
F'(x) = n*(1 + X)^(n-1) ............................ F'(0) = n
F"(x) = n*(n-1)*(1 - x)^(n-2) ...................... F"(0) = n*(n-1)
Similarly, find 3rd derivative, 4th derivative, ...
Hence (1+x)^n = F(0)/0! + F'(0)*x/1! + F"(0)*x^2/2! + ....
Hence (1+x)^n = 1 + n*x + n*(n-1)*x^2/2! + .....
Go to Begin
Q05. Express 1/Asq(1-x^2) in series and Find seires of arcsin(x)
1/Asq(1 - x^2) = (1 - x^2)^(-1/2).
= 1+ (-1/2)*(-x^2)+ (-1/2)*(-1/2-1)*(-x^2)^2+ (-1/2)*(-1/2-1)*(-1/2-2)*(-x^2)^3
= 1 + x^2 + (1*3)*x^4/(2^2) + (1*3*5)*x^6/(2^3) + .....
Find series of arcsin(x)
Since arcsin(x) =
∫
dx/Abs(1-x^2)
arcsin(x) = x + x^3/3 + (1*3)*x^5/(4*2^2) + (1*3*5)*x^7/(6*2^3) + ....
arcsin(x) = x + x^3/3 + 3*x^5/16 + 5*x^7/24 + ......
Go to Begin
Q06. Expand x/(1-x)^2 in series and find Sum[n/(2^n)]
x/(1-x)^2 = x*(1-x)^(-2).
= x*(1 + (-2)*(-x) + (-2)*(-3)*(-x)^2/2! + (-2)*(-3)*(-4)*(-x)^3/3! +....
= x*(1 + 2*x + 3*x^2 + 4*x^3 + ....)
= x + 2*x^2 + 3*x^3 + 4*x^4 + .....
Hence x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + .....
Find Sum[n/(2^n)]
Let x = 1/2,
Then left hand side = x/(1-x)^2 = (1/2)/(1-1/2)^2 = 2.
Then right hand side = 1/2 + 2/2^2 + 3/2^3 + 4/2^4 + ... = Sum[n/(2^n)]
Hence Sum[n/(2^n)] = 2.
Go to Begin
Q07 Express Sqr(1+x) in series
Sqr(1+x) = (1+x)^(1/2).
(1+x)^(1/2) = 1+(1/2)*x+(1/2)*(-1/2)*x^2/2!+(1/2)*(-1/2)*(-3/2)*x^3/3!+.....
(1+x)^(1/2) = 1 + x/2 - x^2/((2!)*(2^2)) + (1*3)*x^3/((3!)*(2^3)) + .....
(n+1)th term = ((-1)^n)*(1*3*5*....*(2*n-3))/((n!)*(2^n))
Go to Begin
Q08 Express 1/(1+x) in series
1/(1+x) = (1+x)^(-1).
(1+x)^(-1) = 1 + (-1)*x +(-1)*(-2)*x^2/2! + (-1)*(-2)*(-3)*x^3/3! +.....
(1+x)^(1/2) = 1 - x + x^2 - x^3 + .....
Go to Begin
Q09
Go to Begin
Q10. Formula
[Sum in C(n,r) Form]
Sum[C(n+1,2)] = C(n+2,3)
Sum[C(n+2,3)] = C(n+3,4)
Sum[C(n+3,4)] = C(n+4,5)
Sum[C(n+4,5)] = C(n+5,6)
[Sum in factor Form]
Sum[1] = n
Sum[n] = n*(n+1)/2!
Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
[Other series]
Study subject |
Sum[n^2] = n*(n+1)*(2*n+1)/6
Study subject |
Sum[n^3] = (n*(n+1)/2)^2
Go to Begin
Q11. Pascal triangle and binomial theorem
A11. Answer
01 .......................... Coeff of expansion terms of (x+y)^0.
01 01 ....................... Coeff of expansion terms of (x+y)^1.
01 02 01 .................... Coeff of expansion terms of (x+y)^2.
01 03 03 01 ................. Coeff of expansion terms of (x+y)^3.
01 04 06 04 01 .............. Coeff of expansion terms of (x+y)^4.
01 05 10 10 05 01 ........... Coeff of expansion terms of (x+y)^5.
01 06 15 20 15 06 01 ........ Coeff of expansion terms of (x+y)^6.
How to use Pascal triangle to expand (x+y)^4 ?
1st term is 1*(x^4)*(y^0) and x power + y power = 4 + 0 = 4.
2nd term is 4*(x^3)*(y^1) and x power + y power = 3 + 1 = 4.
3rd term is 6*(x^2)*(y^2) and x power + y power = 2 + 2 = 4.
4th term is 4*(x^1)*(y^3) and x power + y power = 1 + 3 = 4.
5th term is 1*(x^0)*(y^4) and x power + y power = 0 + 4 = 4.
Properties of (x+y)^4
It expansion has 4 + 1 = 5 terms.
x power + y power = 4.
Reference
Pascal triangle and binomial theorem
Go to Begin
Q16. Coefficients of Binomial expansion
A16. Expansions of (x+1)^n
(x+1)^1 = x^1 + 1*x^0
(x+1)^2 = x^2 + 2*x^1 + 1.
(x+1)^3 = x^3 + 3*x^2 + 3*x + 1.
(x+1)^4 = x^4 + 4*x^3 + 6*x^2 + 4*x + 1.
Notes
x^0 = 1.
x^1 = x.
Go to Begin
Q17. Coefficients of binomial expansion and Pascal triangle
A17. Answer
[Defintion] Pascal triangle : It is coeff of binomial expansion
1, 2, 1 are ceeficients of expansion of (x+y)^2
1, 3, 3, 1 are ceeficients of expansion of (x+y)^3
1, 4, 6, 4, 1 are ceeficients of expansion of (x+y)^4
[Pscal triangle]
Column ...... r0 r1 r2 r3 r4 r5 r6 r7 r8
---------------------------------
n=0 ......... 01
n=1 ......... 01 01
n=2 ......... 01 02 01
n=3 ......... 01 03 03 01
n=4 ......... 01 04 06 04 01
n=5 ......... 01 05 10 10 05 01
n=6 ......... 01 06 15 20 15 06 01
n=7 ......... 01 07 21 35 35 21 07 01
n=8 ......... 01 08 28 56 70 56 28 08 01
[Example] Find coefficient of (x^3)*(y^5) in expansion of (x+y)^n
The x power and y power = n = 3 + 5 = 8.
For y^5 we know it is in (5+1)th term (r =5).
At row n=8 and r=5 we have C(n,r) = C(8,5) = 56.
Hence the coefficient of (x^3)*(y^5) is 56.
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.