Mathematics Dictionary
Dr. K. G. Shih
Integral : Seires of functions
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
CA 18 00 |
- Outlines
CA 18 01 |
- Series of arctan(x)
CA 18 02 |
- Seires of ln(1 + x)
CA 18 03 |
- Series of ln(1 - x)
CA 18 04 |
- series of e^x
CA 18 05 |
- Series of e^(-x)
CA 18 06 |
- Series of sinh(x)
CA 18 07 |
- series of cosh(x)
CA 18 08 |
- Series of sin(x)
CA 18 09 |
- Series of cos(x)
CA 18 10 |
- Series of arcsin(x)
Answers
CA 18 01. Series of arctan(x)
Integral and arctan(x)
arctan(x) =
∫
(1/(1 + x^2))dx
Expand 1/(1+x^2) using binomial theory
1/(1 + x^2)
= (1 + x^2)^(-1)
= 1 + (-1)*x^2 + (-1)*(-1-1)*((x^2)^2)/2! + (-1)*(-1-1)(-1-2)*((x^3)^3)/3! + ....
= 1 - x^2 + x^4 - x^6 + x^8 - ....
Integral by power rule
arctan(x) =
∫
(1/(1 + x^2)dx
=
∫
(1 - x^2 + x^4 - x^6 + x^8 - ....)dx
= x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ....
pi = 4*arctan(1)
pi = 4*(1 - 1/3 + 1/5 - 1/7 + 1/9 - .....)
How many terms are required to get pi = 3.14 ?
Go to Begin
CA 18 02. Series of ln(1 + x)
Integral and ln(1 + x)
ln(1 + x) =
∫
(1/(1 + x))dx
Expand 1/(1+x) using binomial theory
1/(1 + x)
= (1 + x)^(-1)
= 1 + (-1)*x + (-1)*(-1-1)*((x)^2)/2! + (-1)*(-1-1)(-1-2)*((x)^3)/3! + ....
= 1 - x + x^2 - x^3 + x^4 - ....
Integral by power rule
ln(1 + x) =
∫
(1/(1 + x))dx
=
∫
(1 - x + x^2 - x^3 + x^4 - ....)dx
= x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ....
Find ln(2)
Let x = 1
ln(2) = 1 - 1 + 1/2 - 1/3 + 1/4 - 1/5 + 1/6 - 1/7 .....
= 0.5 - 0.33333 + 0.25 - 0.2 + 0.166667 - .....
Go to Begin
CA 18 03. Series of ln(1 - x)
Integral and ln(1 - x)
ln(1 - x) =
∫
(-1/(1 - x))dx
Expand 1/(1-x) using binomial theory
1/(1 - x)
= (1 - x)^(-1)
= 1 + (-1)*(-x) + (-1)*(-1-1)*((-x)^2)/2! + (-1)*(-1-1)(-1-2)*((-x)^3)/3! + ....
= 1 + x + x^2 + x^3 + x^4 - ....
Integral by power rule
ln(1 - x) =
∫
(-1/(1 - x))dx
=
∫
-(1 + x + x^2 + x^3 + x^4 - ....)dx
= -x - (x^2)/2 - (x^3)/3 - (x^4)/4 - ....
Find ln(0.9)
Let x = 0.1
ln(1 - 0.1) = -(0.1 + ((0.1)^2)/2 + ((0.1)^3)/3 + ((0.1)^4)/4 - .....)
ln(0.9) = -(1 + 0.1 + 0.005 + 0.00033 + 0.000025 + ....)
ln(0.9) = -0.10536
Go to Begin
CA 18 04. Series of e^x
Taylor theory
F(x) = D0(0) + D1(0)*x + D2(0)*(x^2)/2! + D3(0)*(x^3)/3! + .....
D0(0) is the F(0)
D1(0) is 1st derivative of F(x) = F'(0)
D2(0) is 2nd derivative of F(x) = F"(0)
D3(0) is 3rd derivative of F(x) at x = 0
D4(0) is 4th derivative of F(x) at x = 0
Use taylor theory
Since the derivative of e^x is e^x, hence
D0(0) = e^(0) = 1
D1(0) = e^(0) = 1
D2(0) = e^(0) = 1
D3(0) = e^(0) = 1
Hence e^x = 1 + x + (x^2)/2! + (x^3)/3! + (x^4)/4! + ......
Find e^1
Let x = 1
e = 1 + 1 + 1/2! + 1/3! + 1/4! + ....
e = 2 + 0.5 + 0.166666 + 0.0416666 + ....
e = 2.71828....
Go to Begin
CA 18 05. Seires of e^(-x)
Use taylor theory
Since the derivative of e^(-x) is -e^(-x), hence
D0(0) = +e^(0) = 1
D1(0) = -e^(0) = 1
D2(0) = +e^(0) = 1
D3(0) = -e^(0) = 1
Hence e^(-x) = 1 - x + (x^2)/2! - (x^3)/3! + (x^4)/4! - ......
Go to Begin
CA 16 06. Seires of sinh(x)
Use taylor theory
Since the derivative of sinh(x) is cosh(x) and derivative cosh(x) = sinh(x) hence
D0(0) = sinh(0) = 0
D1(0) = cosh(0) = 1
D2(0) = sinh(0) = 0
D3(0) = cosh(0) = 1
Hence sinh(x) = 0 + x + 0 + (x^3)/3! + 0 + (x^5)/5! +......
Hence sinh(x) = x + (x^3)/3! + (x^5)/5! + ....
2nd method : cosh(x) = (e^(+x) - e(-x))/2
e^(+x) = 1 + x + (x^2)/2! + (x^3)/3! + (x^4)/4! + ......
e^(-x) = 1 - x + (x^2)/2! - (x^3)/3! + (x^4)/4! + ......
sinh(x) = ((e^(+x) - e^(-x))/2 = x + (x^3)/3 + (x^5)/5 + ....
Go to Begin
CA 16 07. Series of cosh(x)
Use taylor theory
Since the derivative of cosh(x) is sinh(x) and derivative sinh(x) = cosh(x) hence
D0(0) = cosh(0) = 1
D1(0) = sinh(0) = 0
D2(0) = cosh(0) = 1
D3(0) = cosh(0) = 0
Hence cosh(x) = 1 + 0 + (x^2)/2! + 0 + (x^4)/4! +......
Hence sinh(x) = 1 + (x^2)/2! + (x^4)/4! + ....
2nd method : cosh(x) = (e^(+x) + e(-x))/2
e^(+x) = 1 + x + (x^2)/2! + (x^3)/3! + (x^4)/4! + ......
e^(-x) = 1 - x + (x^2)/2! - (x^3)/3! + (x^4)/4! + ......
cosh(x) = ((e^(+x) + e^(-x))/2 = 1 + (x^2)/2! + (x^4)/4! + ....
Go to Begin
CA 18 08. Series of sin(x)
Use Taylor theory
F(x) = sin(x) Hence F(0) = 0
D1(x) = +cos(x) Hence D1(0) = +1
D2(x) = -sin(x) Hence D2(0) = +0
D3(x) = -cos(x) Hence D3(0) = -1
D4(x) = +sin(x) Hence D4(0) = +0
D5(x) = +cos(x) Hence D5(0) = +1
D6(x) = -sin(x) Hence D6(0) = +0
D7(x) = -cos(x) Hence D7(0) = -1
D8(x) = +sin(x) Hence D8(0) = +0
sin(x) = F(0) + D1(0)*x + D2(0)*(x^2)/2! + D3(0)*(x^3)/3! + ......
sin(x) = x - (x^3)/3! + (x^5)/5! - .....
Find sin(0.1 radians)
sin(0.1) = 0.1 - (0.1^3)/3! + (0.1^5)/5! - .....
sin(0.1) = 0.1 - 0.0001666 + 0.0000000
sin(0.1) = 0.099833
Note : This series converges very fast if x is small
Go to Begin
CA 18 09. Series of cos(x)
Use Taylor theory
F(x) = cos(x) Hence F(0) = 1
D1(x) = -sin(x) Hence D1(0) = +0
D2(x) = -cos(x) Hence D2(0) = -1
D3(x) = +sin(x) Hence D3(0) = -0
D4(x) = +cos(x) Hence D4(0) = +1
D5(x) = -sin(x) Hence D5(0) = +0
D6(x) = -cos(x) Hence D6(0) = -1
D7(x) = +sin(x) Hence D7(0) = -0
D8(x) = +cos(x) Hence D8(0) = +1
sin(x) = F(0) + D1(0)*x + D2(0)*(x^2)/2! + D3(0)*(x^3)/3! + ......
sin(x) = 1 - (x^2)/2! + (x^4)/4! - .....
Find cos(0.1 radians)
cos(0.1) = 1 - (0.1^2)/2! + (0.1^4)/4! - .....
cos(0.1) = 1 - 0.005 + 0.00000416
cos(0.1) = 0.9950042
Note : This series converges very fast if x is small
Go to Begin
CA 18 10. Series of arcsin
Integral and arctan(x)
arcsin(x) =
∫
(1/Sqr(1 - x^2))dx
Expand 1/Sqr(1 - x^2) using binomial theory
1/Sqr(1 - x^2)
= (1 - x^2)^(-1/2)
= 1 + (-1/2)*x^2 + (-1/2)*(-1/2-1)*((x^2)^2)/2! + (-1/2)*(-1/2-1)(-1/2-2)*((x^3)^3)/3! + ....
= 1 - (x^2)/2 + (-1)*(-3)*(x^4)/((2^2)*2!) + (-1)*(-3)(-5)*(x^6)/((2^3)*3!) + ...
= 1 - (x^2)/2 + 3*(x^4)/8 - 15*(x^6)/48 + ....
Integral by power rule
arcsin(x) =
∫
(1/Sqr(1 - x^2))dx
=
∫
(1 - x^2 + x^4 - x^6 + x^8 - ....)dx
= x - (x^3)/6 + 3*(x^5)/40 - 15*(x^7)/336 + ....
Go to Begin
CA 18 00. Outlines
Formula
Binomial theory
(x + y)^n = x^n + C(n,1)*(x^(n-1))*y + C(n,2)*(x^(n-2))*(y^2) + ....
C(n,r) = n*(n-1)*(n-2)*....*(n-r+1)/n!
Taylor theory
F(x) = F(0) + D1(0)*x + D2(0)*(x^2)/2! + ....
D1(0) is 1st derivative at x = 0
D2(0) is 2nd derivative at x = 0
D3(0) is 3rd derivative at x = 0
Binomial theory method
1. arctan(x) = x - (x^3)/3 + (x^5)/5 - ....
2. ln(1 + x) = x - (x^2)/2 + (x^3)/3 - ....
3. ln(1 - x) = x + (x^2)/2 + (x^3)/3 + ....
4. arcsin(x) = x - (x^3)/6 + 3*(x^5)/40 - 15*(x^7)/336 + ....
Taylor theory method
e^(+x) = 1 + x + (x^2)/2! + (x^3)/3! + ....
e^(-x) = 1 - x + (x^2)/2! - (x^3)/3! + ....
sin(x) = x - (x^3)/3! + (x^5)/5! - .....
cos(x) = 1 - (x^2)/2! + (x^4)/4! - .....
sinh(x) = x + (x^3)/3! + (x^5)/5! + ....
cosh(x) = 1 + (x^2)/2! + (x^4)/4! + ....
Questions
Compare the series of sin(x) and sinh(x)
Compare the series of cos(x) and cosh(x)
Compare trigonometric functions with hyperbolc
Subjects |
Compare trigonometric functions with hyperbolic
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.