Counter
Mathematics Dictionary
Dr. K. G. Shih

Hyperbolic and trigonometric function
Subjects


Answers


Q01. Comparison of hyperbolic with trigonometric function : Graphics

  • Graphic Calculator Trigonometric functions and hyperbolic functions
  • Method to use
    • Start the garphic calculator
    • Select run at current location
    • Select yes
    • Click Menu
    • Click subject trigonometric function in upper box
    • Click y = sin(x) in lower box to see the diagram
    • Click back command at left side
    • Click subject hyperbolic function in upper box
    • Click y = sinh(x) in lower box to see the diagram
Home work
  • Compare the graphs of y = sin(x) and y = sinh(x)
  • List the similarity and difference

Go to Begin


Q02. Comparison of hyperbolic with trigonometric function : Defintions

Go to Begin

  • sin(A) = y/r
  • cos(A) = y/r
  • tnn(A) = y/x = sin(A)/cos(A)
  • csc(A) = r/y = 1/sin(A)
  • sec(A) = r/y = 1/cos(A)
  • cot(A) = x/y = 1/tan(A)

  • sinh(x) = (exp(x) - exp(-x))/2
  • cosh(x) = (exp(x) + exp(-x))/2
  • tnnh(x) = sinh(A)/cosh(A)
  • csch(x) = 1/sinh(A)
  • sech(x) = 1/cosh(A)
  • coth(x) = 1/tanh(A)

Q03. Comparison of hyperbolic with trigonometric function : Identity

Go to Begin

  • cos(x)^2 + sin(x)^2 = 1
  • tan(x)^2 + 1 = sec(x)^2
  • cot(x)^2 + 1 = csc(x)^2
  • sin(-x) = -sin(x)
  • cos(-x) = +cos(x)
  • tan(-x) = -tan(x)
  • cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y)
  • sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y)
  • tan(x+y) = (tan(x) + tan(y))/(1 + tan(x)*tan(y))

  • cosh(x)^2 - sinh(x)^2 = 1
  • 1 - tanh(x)^2 = sech(x)^2
  • 1 - coth(x)^2 = csch(x)^2
  • sinh(-x) = -sinh(x)
  • cosh(-x) = +cosh(x)
  • tanh(-x) = -tanh(x)
  • cosh(x+y) = cosh(x)*cosh(y) + sinh(x)*sinh(y)
  • sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
  • tanh(x+y) = (tanh(x) + tanh(y))/(1 + tanh(x)*tanh(y))

Q04. Comparison of hyperbolic with trigonometric function : Derivative

Go to Begin

  • d/dx(sin(x)) = +cos(x)
  • d/dx(cos(x)) = -sin(x)
  • d/dx(tan(x)) = +sec(x)^2

  • d/dx(sinh(x)) = +cosh(x)
  • d/dx(cosh(x)) = +sinh(x)
  • d/dx(tanh(x)) = +sech(x)^2

Q05. Answer

Go to Begin

Q06. Answer

Go to Begin

Q07. Answer

Go to Begin

Q08. Answer

Go to Begin

Q09. Answer

Go to Begin

Q10. Answer

Go to Begin

Q00. Hypergeometry

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1