Counter
Mathematics Dictionary
Dr. K. G. Shih

Exponent e^x


  • Q01 | - Properties of y = e^x
  • Q02 | - Find derivative of y = e^x
  • Q03 | - Series of y = e^x
  • Q04 | - Prove that e^(i*pi) = -1
  • Q05 | - Formula

  • Q01. Properties of y = e^x

    Diagram of y = e^x
    Deifintion of y = e^x
    • If y = e^x then x = ln(y)
    • If y = ln(x) then x = e^(ln(y))
    • Composite function
      • ln(e^x) = x
      • e^(ln(x)) = x.
    • Value of y is between 0 and +infinite
    Properties of Y = e^x
      1. Domain : real values of x between -infinite and infinite
      2. Range : +0.0000 to +infinite
      3. The curve is always increasing 4. The curve is concave upward 5. It is the inverse of y = ln(x)
    Special values
    • e^0 = 1
    • e^1 = 1 + 1 + 1/(2!) + 1/(3!) + ....

    Go to Begin

    Q02. Find derivative of y = e^x

    Find y'
    • y = e^x, 1st serivative = e^x
    • y = e^x, 2nd serivative = e^x
    • y = e^x, 3rd serivative = e^x

    Go to Begin

    Q03. Series of e^x
    Taylor's expansion
    • F(x) = F(0) + F1(0)*x + F2(0)*(x^2)/(2!) + F3(0)*(x^3)/(3!) + ....
    • Where
      • F1(0) = 1 is 1st derivative of e^x for x = 0
      • F2(0) = 1 is 2nd derivative of e^x for x = 0
      • F3(0) = 1 is 3rd derivative of e^x for x = 0
      • F4(0) = 1 is 4th derivative of e^x for x = 0
      • Etc.
    • Hence e^x = 1 + x + (x^2)/(2!) + (x^3)/(3!) + .....
    Value of e
    • e = 1 + 1 + 1/(2!) + 1/(3!) + ....
    Go to Begin

    Q04. Prove that e^(i*pi) = -1

    e^(i*x) = cos(x) + i*sin(x)
    Prove that e^(i*x) = cos(x) + i*sin(x)
    • e^(i*x) = 1 + i*x + ((i*x)^2)/(2!) + ((i*x)^3)/(3!) + .....
    • = (1 - (x^2)/(2!) + (x^4)/(4!) + ...) + i*(x - (x^3)/(3!) + .....)
    • = cos(x) + i*sin(x)
    • = cis(x)
    • If x = pi
      • cos(pi) = -1
      • sin(pi) = 0
      • Hence e^(i*pi) = -1

    Go to Begin

    Q05. Formula
    • e^x = 1 + x + x^2)/(2!) + ...
    • e^0 = 1
    • e^1 = 1 + 1 + 1/(2!) + ...
    • e^(ln(x)) = x
    • If y = e^x, y' = e^x
    • If y = e^x, y" = e^x
    • [e^x]dx = e^x

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1