Counter
Mathematics Dictionary
Dr. K. G. Shih

Question and Answer
Questions


  • Q01 | - Difference in linear function sequences
  • Q02 | - Difference in quadratic function sequences : y=a*x^2+b*x+c
  • Q03 | - Difference in cubic function sequences : y=a*x^3+b*x^2+c*x+d
  • Q04 | - Find function of y in terms of x for a given sequences
  • Q05 | - More than 50 series can be found
  • Q06 | - Special series on internet
  • Q07 | - Find the sum of 1/(1*2) + 1/(2*3) + 1/(3+4) + .... + 1/(999*1000)
  • Q08 | - Three numbers in arithmetic sequence.
  • Q09 | - Formula
  • Q10 | -

  • Answers


    Q01. Difference in linear function sequences : y = a*x + b

    Solution
      * ..... x ....... y ....... y'
      * ..... 1 ..... a+b ....... a
      * ..... 2 .... 2a+b ....... a
      * ..... 3 .... 3a+b ....... a
      * ..... 4 .... 4a+b ....... a
      * ..... 5 .... 5a+b ....... a
    First derivative y' is the first difference = a

    Go to Begin

    Q02. Difference in quadratic function sequences : y=a*x^2+b*x+c

    Solution
      * x ......... y ...... y' ..... y"
      * 0 ......... c
      * 1 ..... a+b+c .... a+b
      * 2 ... 4a+2b+c ... 3a+b ..... 2a
      * 3 ... 9a+3b+c ... 5a+b ..... 2a
      * 4 .. 16a+4b+c ... 7a+b ..... 2a
    Second derivative y" is the second difference = 2a

    Go to Begin

    Q03. Difference in cubic function sequences : y=a*x^3+b*x^2+c*x+d

    Find the difference
      * x ............. y ......... y' ..... y" .... 3rd diff
      * 1 ....... a+b+c+d ..... a+b+c
      * 2 .... 8a+4b+2c+d ... 7a+3b+c ... 6a+2b
      * 3 ... 27a+9b+3c+d .. 19a+5b+c .. 12a+2b .... 6a
      * 4 .. 64a+16b+4c+d .. 37a+7b+c .. 18a+2b .... 6a
      * 5 . 125a+25b+5c+d .. 61a+9b+c .. 24a+2b .... 6a
    The 3rd difference = 6a (Note : 3rd derivatve = 6a)

    Go to Begin

    Q04. Find function of y in terms of x for the following sequences

    • x = 0, 1, 2, 3, 04, 05, 06, 07, 08, ....
    • y = 0, 1, 3, 6, 10, 15, 21, 28, 36, ....


    Solution
    [Method 1] By finding dfiiference
      * y = 03, 06, 10, 15, 21, 28, 35, ........
      * y'= --, 03, 04, 05, 06, 07, 08, ........
      * y"= --, --, 01, 01, 01, 01, 01, ........
    • Let the function be y=a*x^2+b*x+c
    • Because 2nd diff = 2a =1. Hence a=1/2.
    • Also we can see y=0 as x=0. Thus c = 0.
    • Now we have y=x^2/2 + b*x.
    • We know that x=1 and y=1 and we get b=1/2.
    • The requred function y = x(x+1)/2.
    • This is number in triangular pattern
    [Method 2] By observation
    • T(0) = 0
    • T(1) = 1
    • T(2) = 1 + 2 = 3
    • T(3) = 1 + 2 + 3 = 6
    • T(4) = 1 + 2 + 3 + 4 = 10
    • T(n) = 1 + 2 + 3 + 4 + ...... + n = n*(n+1)/2
    • Hence the functions is y = x*(x+1)/2

    Go to Begin

    Q05. More than 50 series can be found

    Examples
      a. Arithematic Progression (A.P.) : See keyword Arithematic series
      b. Geometric Progression (G.P.) : See keyword Geometric series
      c. Harmonci Progression (H.P.) : See keywordHarmonic series
      d. P series

    Go to Begin

    Q06. Special series on internet


    Go to Begin

    Q07. Find the sum of 1/(1*2) + 1/(2*3) + 1/(3+4) + .... + 1/(999*1000)

    Solution
    • 1/(1*2) = 1/1 - 1/2
    • 1/(2*3) = 1/2 - 1/3
    • 1/(3*4) = 1/3 - 1/4
    • .......
    • 1/(998*999) = 1/998 - 1/999
    • 1/(999*1000)= 1/999 - 1/1000
    • Sum left above lines = 1/(1*2) + 1/(2*3) + 1/(3+4) + .... + 1/(999*1000)
    • Sum right above lines = 1 - 1/1000 = 0.999
    Answer

    Go to Begin

    Q08. Three numbers in arithmetic sequence. if 1st number adds 9, 2nd number adds 7
    and 3rd number adds 9 and these new numbers will be in geometric sequence.
    Find these numbers in postive values.

    Solution
    • Let the three numbers be x-d, x, x+d
    • Then ((x-d)+9)/(x+7) = (x+7)/((x+d)+9)
    • Hence ((x-d)+9)*((x+d)+9) = (x+7)^2
    • Simplify we have 4*x = d^2 - 32
    • If d = 8 and x = 8 then numbers are 00, 08, 16
    • If d =10 and x =17 then numbers are 07, 17, 27
    • If d =12 and x =24 then numbers are 12, 24, 36

    Go to Begin

    Q09. Formula
    • Sum[1] = n if there are n terms
    • Sum[n] = n*(n+1)/2
    • Sum[n^2] = n*(n+1)*(2*n+1)/6
    • Sum[n^3] = (n*(n+1)/2)^2
    • Sum[n*(n+1)/2] = n*(n+1)*(n+2)/3!
    • Arithmetic Progression (A. P.)
      • T(1) = a is the first term
      • T(n)=a+(n-1)*d where d is common difference = T(n)-T(n-1)
      • S(n) = n*(T(1)+T(n))/2
      • a,b,c in arithmetric sequence then b-a = c-b and b is arithmetric mean
    • Geometirc progression
      • T(1) = a
      • T(n) = a*r^(n-1) where r is common ration = T(n)/T(n+1)
      • S(n) = a*(1-r^n)/(1-r)
        • If r < 1 then S(n) = a/(1-r) and the series is convergent
        • if r >= 1 then sequence is diverge
      • a,b,c in geometric sequence the a/b = b/c and b is geometric mean

    Go to Begin

    Q10. Answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1