Mathematics Dictionary
Dr. K. G. Shih
Senior High Mathematics
Z041 : Determinant of order 4
Symbol Defintion
......... Example : 2*3 means 2 times 3
Questions
Q01 |
- Pascal triangle
Q02 |
- Sequence at r1 : 1, 2, 3, 4, 5, ....
Q03 |
- Sequence at r2 : 1, 3, 6, 10, 15, 21, .....
Q04 |
- Prove that Sum[n*(n + 1)/2] = n*(n + 1)*(n + 2)/6
Q05 |
- Sequence : Prove that Sum[C(n + 1, 2)] = C(n + 2, 3)
Q01. Pascal triangle
n .... r0 .... r1 .... r2 .... r3 .... r5 .... r6 .... r7 .... r8
0 ..... 1
1 ..... 1 ..... 1
2 ..... 1 ..... 2 ..... 1
3 ..... 1 ..... 3 ..... 3 ..... 1
4 ..... 1 ..... 4 ..... 6 ..... 4 ..... 1
5 ..... 1 ..... 5 .... 10 .... 10 ..... 5 ..... 1
6 ..... 1 ..... 6 .... 15 .... 20 .... 15 ..... 6 ..... 1
7 ..... 1 ..... 7 .... 21 .... 35 .... 35 .... 21 ..... 7 ..... 1
Example : Expand (x + y)^6
(x + y)^5 = x^5 + 5*(x^4)*y + 10*(x^3)*(y^2) + 10*(x^2)*(y^2) + 5*x*(y^4) + y^5
The coefficients are in Pascal triangle at n = 5
Go to Begin
2. Sequence at r1
Sequence
1, 2, 3, 4, 5, 6, ....
T(n) = nth term = n
S(n) = Sum of n terms = n*(n + 1)/2
Go to Begin
Q03.Sequence at r2
Sequence
1, 3, 6, 10, 15, 21, ....
T(n) = nth term = n*(n + 1)/2
S(n) = Sum of n terms = n*(n + 1)*(n + 2)/6
Go to Begin
Q04. Prove that Sum[n*(n + 1)/2] = n*(n + 1)*(n + 2)/6
C(n, r) is coeff of binomial expansion.
1. What is Pascal triangle ?
2. Prove that Sum[n*(n + 1)/2] = n*(n + 1)*(n + 2)/3!
3. Prove that Sum[C(n + 1, 2)] = C(n + 2, 3)
Reference
Subjects |
Sequence and Pascal triangle
Subjects |
Prove that Sum[n*(n + 1)/2] = n*(n + 1)*(n + 2)/6
Subjects |
Prove that Sum[C(n + 1, 2)] = C(n + 2, 3)
Go to Begin
Q05. Sequence from C(n+1, 2)
Questions
1. Write down the sequence
2. Find the nth term T(n)
3. Find the sum S(n)
Solutions
1. The sequence
n = 1 : C(2, 2) = 1
n = 2 : C(3, 2) = 3*2/(2!) = 3
n = 3 : C(4, 2) = 4*3/(2!) = 6
n = 4 : C(5, 2) = 5*4/(2!) = 10
n = 5 : C(6, 2) = 6*5/(2!) = 15
Etc.
This sequence is the triangular number patterns
It is 1, 3, 6, 10, 15, 21, .... as shown in Pascal triangle at r2 column
2. T(n)
T(n) = C(n + 1, 2) = n*(n + 1)/(2!)
3. S(n)
S(n) = Sum[C(n + 1), 2] = C(n + 2, 3)
S(n) = Sum[n*(n + 1)/2] = n*(n + 1)*(n + 2)/(3!)
Pscal triangle with r
Column ...... r0 r1 r2 r3 r4 r5 r6 r7 r8
---------------------------------
n=0 ......... 01
n=1 ......... 01 01
n=2 ......... 01 02 01
n=3 ......... 01 03 03 01
n=4 ......... 01 04 06 04 01
n=5 ......... 01 05 10 10 05 01
n=6 ......... 01 06 15 20 15 06 01
n=7 ......... 01 07 21 35 35 21 07 01
n=8 ......... 01 08 28 56 70 56 28 08 01
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.