Welcome to Mathematics Dictionary
Equilateral triangle - DP + DQ + DS = h
Figure 118 : Equilateral triangle - DP + DQ + DS = h
Q01 |
- Diagram
Q02 |
- Equilateral triangle : DP + DQ + DS = height
Q03 |
- Questions
Q04 |
- Reference
Q01. Diagram
Equilateral triangle - Point D inside triangle DP + DQ + DS = h
Go to Begin
Q2. Equilateral triangle : DP + DQ + DS = height
Keywords
Equilateral triangle properties
sin(A) + sin(B) = 2*sin((A + B)/2)*cos((A - B)/2)
Construction
1. Draw an equilateral triangle
2. Point D is inside triangle
3. Draw DP, DQ and DS perpendicular to the sides
4. Prove that DP + DQ + DS = h
Proof
Angle BAD = 30 + angle RAD and Angle DAQ = 30 - angle RAD
Right triangle ADQ : DQ = AD*sin(30 - RAD)
Right triangle SAD : DS = AD*sin(30 + RAD)
Hence DQ + DS = AD*(sin(30 - RAD) + sin(30 + RAD))
Since sin(A) + sin(B) = 2*(sin((A+B)/2)*(cos(A-B)/2)
Hence DQ + DS = 2*AD*(sin(30)*cos(RAD))
= AD*cos(RAD)
= AR
Height = AR + DP = DP + DQ + DS
Go to Begin
Q03. Questions
1. What is equilateral triangle ?
2. What is the height of a triangle ?
3. What is the distance from a point to the side of triangle ?
4. What is formula of the sum of two functions in trigonometry ?
Go to Begin
Q04. Reference
Trigonometry
TR 07 08 : Sum of two functions
Example : sin(A) + sin(B) = 2*(sin((A+B)/2)*(cos(A-B)/2)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.