Welcome to Mathematics Dictionary
Figure 221 : e^x + e^(2*x) + e^y + e^(2*y) = 12
e^x + e^(2*x) + e^y + e^(2*y) = 12
Q01 |
- Diagram
Q02 |
- e^x + e^(2*x) + e^y + e^(2*y) = 12
Q03 |
-
Q04 |
-
Q05 |
-
Q01. Diagram of e^x + e^(2*x) + e^y + e^(2*y) = 12
Go to Begin
Q02. e^x + e^(2*x) + e^y + e^(2*y) = 12
Exponent
Q9
Question : How to sketch the curve
1. Change equation as y = f(x)
2. (e^y)^2 + e^y + (e^x + e^(2*x) - 12) = 0
3. Use quadratic formula to find e^y
4. Hence we can have y = f(x)
Question : How to find asymoptote of the curve
1. when x = ln(3)
e^(x) = e^(ln(3)) = 3
e^(2*x) = (e^x)^2 = 9
2. Hence we have e^y + e^(2*y) = 0
3. But e^y = 0 means y = -infinite
4. Hence asymptote is at x = ln(3)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.