Welcome to Mathematics Dictionary
Figure 223 : Inverse of y = x^2 - 6*x + 8

    Inverse of y = x^2 - 6*x + 8


  • Q01 | - Diagram : Inverse of y = x^2 - 6*x + 8
  • Q02 | - Inverse of y = x^2 - 6*x + 8
  • Q03 | - Inverse of y = x^2 - 5*x + 8
  • Q04 | - Inverse of y = x^2 - 3*x + 4
  • Q05 | - Graphic solution is easy and clear


    Q01. Diagram : Inverse of y = x^2 - 6*x + 8


    Go to Begin

    Q02. Inverse of y = x^2 - 6*x + 8

    Intersection of y = x^2 - 6*x + 8 with inverse
    • Estimate the points of intersection
    How to find the points of intersection ?

    Go to Begin

    Q03. Inverse of y = x^2 - 5*x + 8

    Intersection of y = x^2 - 5*x + 8 with inverse
    • Estimate the points of intersection
    Diagram

    Go to Begin

    Q04. Quadratic function with inverse has one or none intersection

    1. Intersection of y = x^2 - 2*x + 4 with inverse
    2. Intersection of y = x^2 - 3*x + 4 with inverse
    • Estimate the points of intersection
    • Diagram Inverse of y = x^2 - 3*x + 4

    Go to Begin

    Q05. Discussion

    Graphic solution
    Find intersection of quadratic function with its inverse
    • Find intersection with y = x first
    • Hence we have x = a*x^2 + b*x + c
    • If (b - 1)^2 - 4*a*c < 0, then no intersection
    • If (b - 1)^2 - 4*a*c = 0, then one intersection
    • If (b - 1)^2 - 4*a*c > 0, then two intersections or 4 intersections

    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

    1