Mathematics Dictionary
Dr. K. G. Shih
Question and Answer
Questions
Symbol Defintion
Sqr(x) = Square root of x
Subject |
F308 - Equation of ellipse a*x^2 + c*y^2 + d*x + e*y + f = 0
Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y - 191 = 0
Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y + 34 = 0
Find locus of 9*x^2 + 25*y^2 - 18*x + 50*y + 50 = 0
Subject |
F309 - Ellipse : Convert (x/a)^2 + (y/b)^2 = 1 to polar form
Find equation of directrix of (x/5)^2 + (y/3)^2 = 1
Convert (x/5)^2 + (y/3)^2 = 1 to polar form
Subject |
F310 - Ellipse : Polar form
Convert R = (D*e)/(1 - e*cos(A)) to rectangular form
Convert R = 1.8/(1 - 0.8*cos(A)) to rectangular form
Keyword |
S36 - Ellipse : Construct using locus definition
Keyword |
Z002 - Equation : x^4 + x^3 + x^2 + x + 1 = 0
Find roots of x^5 - 1 = 0 first
Then use x^5 - 1 = (x - 1)*(x^4 + x^3 + x^2 + x + 1) to get solution
Keyword |
S16 - Equation : x^5 - 1 = 0
Keyword |
S86 - Equation : x^5 + 1 = 0
Keyword |
S96 - Equation : x^4 - i = 0
Keyword |
S97 - Equation : x^4 - i = 0
Keyword |
S15 - Equation : x^7+ 2*x^6- 5*x^5- 13*x^4- 13*x^3- 5*x^2+ 2*x+ 1 = 0
Keyword |
S106- Equilateral triangle : Circle inscribed triangle
Keyword |
S112- Equilateral triangle : Distance of inside point to sides = height
Keyword |
S35 - Equilateral triangle : Divide one side into 3 equal parts
Keyword |
S113- Equilateral triangle : Divide one side into 3 equal parts
Diagram for S113
Keyword |
S106- Equilateral triangle : Circle inscribed triangle
Keyword |
S81 - Equilateral triangle : Inscribed unit circle : PA^2 + PB^2 + PC^2 = 2*3
Keyword |
S107- Equilateral triangle : Square inscribed triangle
Keyword |
S39 - Equilateral triangle : Sum of distance of inside point D to sides
Diagram for S39
Keyword |
F221- Exponent : Example for e^x + e^(2*x) + e^y + e^(2*y) = 12
1. How to ketch the curve ?
2. Find the asymptote
Keyword |
Z003- Ex-central triangle : Definition and construction
1. Construct ex-central triangle
2. Construct pedal triangle
Keyword |
S23 - Ex-central triangle
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.