Mathematics Dictionary
Dr. K. G. Shih
Conic Sections
Q01 |
- Circle
Q02 |
- Ellipse
Q03 |
- Hyperbola
Q04 |
- Parabola
Q05 |
- Elliminate x*y terms
Q01. Circle
Keyword |
Circle equations in various coordinates
Equations of circle in rectangular form
Equations of circle in polar form
Equations of circle in parametric equations
Keyword |
Circle : Draw 4 circles to tangent triangle ABC
1. Draw 1 in-circle of triangle ABC
2. Draw 3 ex-cirlce of triangle ABC
Go to Begin
Q02. Ellipse
Ellipse
Subject |
Ellipse : Convert (x/a)^2 + (y/b)^2 = 1 to polar form
Subject |
Ellipse : Polar form
Convert R = (D*e)/(1 - e*cos(A)) to rectangular form
Convert R = 1.8/(1 - 0.8*cos(A)) to rectangular form
Keyword |
Ellipse : Sketch using ruler
Keyword |
Ellipse : Sketch using string
Keyword |
Ellipse : Sketch tangent using reflection
Go to Begin
Q03. Hyperbola
Hyperbola
Keyword |
Hyperbola : Formula and examples
Keyword |
Hyperbola : Locus
1. Two fixed points F and G. If PF - PG = 8, Find locus of P
2. Prove locus of hyperbola is (x/a)^2 - (y/b)2 = 1
Keyword |
Hyperbola : (x/a)^2 - (y/b)^2 = -1
1. Comparison : (x/a)^2 - (y/b)^2 = -1 and (x/a)^2 - (y/b)^2 = 1
2. Prove that x = sec(t) and y = tan(t) is a hyperbola
Keyword |
Hyperbola : R = (D*e)/(1 - e*cos(A))
1. Convert (x/4)^2 - (y/3)^2 = 1 to polar form
2. Convert R = 2.25/(1 - 1.25*cos(A)) to rectangular form
Keyword |
Hyperbola : R = (D*e)/(1 + e*cos(A))
1. Compare R = (D*e)/(1 - e*cos(A)) and R = (D*e)/(1 + e*cos(A))
2. Study hyperbola x*y = 1
Keyword |
Hyperbola : x*y = 1
1. Compare x*y = 1 and (x/a)^2 - (y/b)^2 = 1
2. Find focal length and equation of directrix of hyperbola x*y = 1
Keyword |
Hyperbola : Sketch tangent using reflection
Go to Begin
Q04. Parabola
Parabola
Keyword |
Parabola : Defintion and Equations
Keyword |
Parabola : Locus y = (x^2)/(2*D) - D/2
Keyword |
Parabola : Sketch
Convert R = D/(1 - sin(A)) to rectangular form
Keyword |
Parabola : Polar form
1. Compare R = D/(1 - sin(A)) with R = D/(1 - cos(A))
2. Compare R = D/(1 - sin(A)) with y = (x^2)/(2*D) - D/2
3. Compare R = D/(1 - sin(A)) with y = a*(x^2) + B*x + c
Keyword |
Parabola : Quadratic function
1. Properties of y = a*x^2 + b*x + c
2. Parabola of y = a*x^2 + b*x + c
Keyword |
Parabola : Sketch using ruler
Keyword |
Parabola : Sketch tangent using reflection
Go to Begin
Q05. Elliminate x*y terms
Equation in implicity form
Equation : F(x,y) = A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0.
Rotation : Transform x and y to u and v
(1) x = u*cos(t) - v*sin(t)
(2) y = u*sin(t) + v*cos(t)
Equation after rotation : A'*u^2 + B'*u*v + C'*v^2 + D'*u + E'*v + F' = 0
A' = A*cos(t)^2 + B*cos(t)*sin(t) - C*sin(t)^2
B' = (C - A)*sin(2*t) + B*cos(2*t)
C' = A*sin(t)^2 - B*cos(t)*sin(t) + C*cos(t)^2
D' = D*cos(t) + E*sin(t)
E' = -D*sin(t) + E*cos(t)
F' = F
Eliminate u*v term :
Let B'=0
(C - A)*sin(2*t) + B*cos(2*t) = 0
Hence tan(2*t) = B/(A - C)
Angle 2*t = arctan(B/(A - C))
Chnage A'*u^2 + C'*v^2 + D'*u + E'*v + F' = 0 to ((u-h)/a)^2 + ((v-k)/b)^2 = 1
Since there is no u*v, we can use completing square nethod
Hence we find h and k
We can also find a and b
We can also find vertice and focal length f
Example : Change x*y = 1 to standard form
Hyperbola
Go to Begin
Q06. Elliminate x*y terms
Equation in implicity form
Equation : F(x,y) = A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
Rotation : Transform x and y to u and v
(1) x = u*cos(t) - v*sin(t)
(2) y = u*sin(t) + v*cos(t)
Substitute x and y into F(x,y)
A*(u*cos(t) - v*sin(t))^2
= A*(u^2)*cos(t)^2 - 2*A*u*v*cos(t)*sin(t) + A*(v^2)*sin(t)^2
B*(u*cos(t) - v*sin(t))*(u*sin(t) + v*cos(t))
= B*(u^2)*cos(t)*sin(t) + B*u*v*(cos(t)^2)
- B*u*v*(sin(t)^2) - B*(v^2)*cos(t)*sin(t)
C*(u*sin(t) + v*cos(t))^2
= C*(u^2)*sin(t)^2 + 2*C*u*v*cos(t)*sin(t) + C*(v^2)*cos(t)^2
D*(u*cos(t) - v*sin(t)) = D*u*cos(t) - D*v*sin(t)
E*(u*sin(t) + v*cos(t)) = E*u*sin(t) + E*v*sin(t)
F = F
New coefficients : A', B', C', D', E', F'
A'*u^2 + B'*u*v + C'*v^2 + D'*u + E'*v + F' = 0
Equation after rotation : A'*u^2 + B'*u*v + C'*v^2 + D'*u + E'*v + F' = 0
A' = A*cos(t)^2 + B*cos(t)*sin(t) - C*sin(t)^2
B' = (C - A)*sin(2*t) + B*cos(2*t)
C' = A*sin(t)^2 - B*cos(t)*sin(t) + C*cos(t)^2
D' = D*cos(t) + E*sin(t)
E' = -D*sin(t) + E*cos(t)
F' = F
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.