Q01 |
- F101 : Sides AB, AC and Median AD are given
Q02 |
- F102 : Medians AD, AE and side AB are given
Q03 |
- F103 : Three circles touch each other with same common tangent
Q04 |
- F104 : Square side a and Four sim-circle radius a/2
Q05 |
- F105 : Circle inscribed an equilateral triangle with other two small circle
Q06 |
- F106 : Circle inscribed an equilateral triangle with other 3 small circles
Q07 |
- F107 : Square and equaliteral triangle
Q08 |
- F108 : Area of triangle formed by medians of triangle ABC
Q09 |
- F109 : Heights and medians of equilateral triangle ABC
Q10 |
- F110 : Pedal triangle of equilateral triangle
Q11 |
- F111 : Excentral triangle of equilateral triangle
Q12 |
- F112 : Pedal triangle of triangle ABC
Q13 |
- F113 : Ex-central triangle of triangle ABC
Q14 |
- F114 : Construct 4 congruent triangles using triangle ABC
Q15 |
- F115 : Ortho-center, centroid and circum-center are colinear
Q16 |
- F116 : Prove cos(A - B) = cos(A)*cos(B) + sin(A)*sin(B)
Q17 |
- F117 : Divide equilateral triangle side into 3 eqal parts
Q18 |
- F118 : Point inside equilaleral triangle to sides equal height
Q19 |
- F119 : A(7,4), B(3,1), C(0,k) find k if AC + BC is minimum
Q20 |
- F120 : Hexagon inscribed equilateral triangle
Q21 |
- F121 : Heights of triangle are concurrent
Q22 |
- F122 : Bisector of a line
Q23 |
- F123 : Bisector of an angle
Q24 |
- F124 : Conditions of two lines in parallel
Q25 |
- F125 : Angles in a circle
Q26 |
- F126 : Trinagle sides s = (a + b + c)/2
Q27 |
- F127 : Circum-center
Q28 |
- F128 : In-center
Q29 |
- F129 : Ex-center
Q30 |
- F130 : Centroid
Q31 |
- F131 : Ortho-center
Q32 |
- F132 : Pedal Triangle
Q33 |
- F133 : Ex-central triangle
Q34 |
- F134 : Three point define a circle
Q35 |
- F135 : Tangent to circle (1)
Q36 |
- F136 : Tangent to circle (2)
Q37 |
- F137 : Concyclic
Q38 |
- F138 : How many chords
Q39 |
- F139 : Centroid
Q40 |
- F140 : Locus in paralleldiagram
Q41 |
- Locus of five centers of triangle
Answers
|
Q01. Figure 101 : Sides AB, AC and Median AD are given
Construct triangle ABC
Go to Begin
Q02. Figure 102 : Medians AD, AE and side AB are given
Construct triangle ABC
Go to Begin
Q03. Figure 103 : Three circles touch each other with same common tangent
Find area of small circle
Go to Begin
Q04. Figure 104 : Square side a and Four sim-circle radius a/2
Find area of shaded portion
Go to Begin
Q05. Figure 105 : Circle inscribed an equilateral triangle with other 2 small circles
Find area of the smaller circle
Go to Begin
Q06. Figure 106 : Circle inscribed an equilateral triangle with other 3 small circles
Find area of the smaller circles
Go to Begin
Q07. Figure 107 : Square and equaliteral triangle
Go to Begin
Q08. Figure 108 : Area of triangle formed by medians of triangle ABC
Note
- We should remeber the 1/3 rule
- This diagram is also used to prove that medians are concurrent
Go to Begin
Q09. Figure 109 : Heights and medians of equilateal triangle ABC
Heights are concurrent
Go to Begin
Q10. Figure 110 : Pedal triangle of equilateral triangle ABC
Construct a pedal triangle
Go to Begin
Q11. Figure 111 : Ex-central triangle of equilateral triangle
Construct ex-central triangle
Go to Begin
Q12. Figure 112 : Pedal triangle of triangle ABC
Construct Pedal triangle
Go to Begin
Q13. Figure 113 : Ex-central triangle of triangle ABC
Construct ex-central triangle
Go to Begin
Q14. Figure 114 : Construct 4 congruent triangles using triangle ABC
Reference
Go to Begin
Q15. Figure 115 : Ortho-center, centroid and circum-center are colinear
Reference
Go to Begin
Q16. Figure 116 : cos(A - B) = cos(A)*cos(B) - sin(A)*sin(B)
Proof
Go to Begin
Q17. Figure 117 : Divide equilateral triangle side into 3 eqal parts
Proof
Go to Begin
Q18. Figure 118 : Point inside equilaleral triangle to sides equal height
Proof
Go to Begin
Q19. Figure 119 : A(7,4), B(3,1), C(0,k) find k if AC + BC is minimum
Proof
Go to Begin
Q20. Figure 120 : Hexagon inscribed equilateral triangle
Reference
Go to Begin
Q21. Figure 121: Heights are concurrent
Proof
Go to Begin
Q22. Figure 122 : Bisector of a line
Diagram
Method
Go to Begin
Q23. Figure 123 : Bisector of an angle
Diagram
Method
Go to Begin
Q24. Figure 124 : Conditions of two parallel lines
Diagram
Method
Go to Begin
Q25. Figure 125 : Angles in circle
Diagram
Method
Go to Begin
Q26. F126 : Trinagle sides s = (a + b + c)/2
Diagram
Application : See keywords
- 1. Area of triangle = Sqr(s*(s-1)*(s-b)*(s-c))
- 2. In-circle : Tangent at A is (s - a)
- 3. Ex-circle : Tangent at A is s
- 4. Half angle formula in terms of s
Go to Begin
Q27. F127 : Circum-center
Diagram
Reference
Go to Begin
Q28. F128 : In-center
Diagram
Reference
Go to Begin
Q29. F129 : Ex-center
Diagram
Reference
Go to Begin
Q30. F130 : Centroid
Diagram
Reference
Go to Begin
Q31. F131 : Ortho-center
Diagram
Reference
Go to Begin
Q32. F132 : Pedal triangle
Diagram
Reference
Go to Begin
Q33. F133 : Ex-central triangle
Diagram
Reference
Go to Begin
Q34 F134 : Three points define a circle
Diagram
Reference
Go to Begin
Q35. F135 : Tangent to circle (1)
Diagram
Reference
Go to Begin
Q36. F136 : Tangent to circle (2)
Diagram
Reference
Go to Begin
Q37. F137 : Concyclic
Diagram
Reference
Go to Begin
Q38. F138 : How many chords ?
Diagram
Reference
Go to Begin
Q39. F139 : Circile inscribed in quadrilateral
Diagram
Reference
Go to Begin
Q40. Q40 : Locus in parallelogram
Question
- Parallelogram ABCD
- Bisectors of angle BCD and angle ADC meet at O
- Find locus of O
Diagram
Diagram
Go to Begin
Q41 : Locus of five centers of triangle
Diagram
Go to Begin
|
|